Unveiling the potential of A. fabrum and γ-aminobutyric acid for mitigation of nickel toxicity in fenugreek
Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
38745058
PubMed Central
PMC11094130
DOI
10.1038/s41598-024-61894-7
PII: 10.1038/s41598-024-61894-7
Knihovny.cz E-resources
- Keywords
- Chlorophyll contents, Fenugreek, Gas exchange attributes, Nickel, Rhizobacteria, γ-Aminobutyric acid,
- MeSH
- gamma-Aminobutyric Acid * metabolism MeSH
- Plant Roots drug effects growth & development metabolism MeSH
- Soil Pollutants toxicity MeSH
- Nickel * toxicity MeSH
- Trigonella * MeSH
- Publication type
- Journal Article MeSH
Nickel (Ni) is a heavy metal that adversely affects the growth of different crops by inducing oxidative stress and nutrient imbalance. The role of rhizobacteria (RB) is vital to resolve this issue. They can promote root growth and facilitate the uptake of water and nutrients, resulting in better crop growth. On the other hand, γ-aminobutyric acid (GABA) can maintain the osmotic balance and scavenge the reactive oxygen species under stress conditions. However, the combined effect of GABA and RB has not been thoroughly explored to alleviate Ni toxicity, especially in fenugreek plants. Therefore, in the current pot study, four treatments, i.e., control, A. fabrum (RB), 0.40 mM GABA, and 0.40 mM GABA + RB, were applied under 0Ni and 80 mg Ni/kg soil (80Ni) stress. Results showed that RB + 0.40 mM GABA caused significant improvements in shoot length (~ 13%), shoot fresh weight (~ 47%), shoot dry weight (~ 47%), root length (~ 13%), root fresh weight (~ 60%), and root dry weight (~ 15%) over control under 80 Ni toxicity. A significant enhancement in total chlorophyll (~ 14%), photosynthetic rate (~ 17%), stomatal CO2 concentration (~ 19%), leaves and roots N (~ 10 and ~ 37%), P (~ 18 and ~ 7%) and K (~ 11 and ~ 30%) concentrations, while a decrease in Ni (~ 83 and ~ 49%) concentration also confirmed the effectiveness of RB + 0.40 mM GABA than control under 80Ni. In conclusion, fabrum + 0.40 mM GABA can potentially alleviate the Ni toxicity in fenugreek plants. The implications of these findings extend to agricultural practices, environmental remediation efforts, nutritional security, and ecological impact. Further research is recommended to elucidate the underlying mechanisms, assess long-term effects, and determine the practical feasibility of using A. fabrum + 0.40GABA to improve growth in different crops under Ni toxicity.
See more in PubMed
Kumar D, et al. Review on interactions between nanomaterials and phytohormones: Novel perspectives and opportunities for mitigating environmental challenges. Plant Sci. 2024;340:111964. doi: 10.1016/j.plantsci.2023.111964. PubMed DOI
Choudhary R, et al. Comprehensive journey from past to present to future about seed priming with hydrogen peroxide and hydrogen sulfide concerning drought, temperature, UV and ozone stresses: A review. Plant Soil. 2024 doi: 10.1007/s11104-024-06499-9. DOI
Mariyam S, et al. Nanotechnology, a frontier in agricultural science, a novel approach in abiotic stress management and convergence with new age medicine: A review. Sci. Total Environ. 2024;912:169097. doi: 10.1016/j.scitotenv.2023.169097. PubMed DOI
Kumar D, et al. Comparative investigation on chemical and green synthesized titanium dioxide nanoparticles against chromium (VI) stress eliciting differential physiological, biochemical, and cellular attributes in Helianthus annuus L. Sci. Total Environ. 2024;930:172413. doi: 10.1016/j.scitotenv.2024.172413. PubMed DOI
Agnihotri, A. & Seth, C. S. Transgenic Brassicaceae. in Transgenic Plant Technology for Remediation of Toxic Metals and Metalloids 239–255 (Elsevier, 2019). 10.1016/B978-0-12-814389-6.00011-0.
Chopra A, Pathak C, Prasad G. Scenario of heavy metal contamination in agricultural soil and its management. Journal of Applied and Natural Science. 2009;1:99–108. doi: 10.31018/jans.v1i1.46. DOI
Sharma A, Dhiman A. Nickel and cadmium toxicity in plants. J. Pharm. Sci. Innov. 2013;2:20–24. doi: 10.7897/2277-4572.02213. DOI
Scott-Fordsmand, J. J. Toxicity of Nickel to Soil Organisms in Denmark. in Reviews of Environmental Contamination and Toxicology (eds. Ware, G. W., Nigg, H. N. & Bevenue, A.) vol. 148 1–34 (Springer, New York, NY., 1997).
Tian, H. et al. Silicon alleviates nickel toxicity in cucumber seedlings (\textit{Cucumis sativus} L.). J Plant Nutr41, 940–947 (2018).
Pandolfini T, Gabbrielli R, Comparini C. Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ. 1992;15:719–725. doi: 10.1111/j.1365-3040.1992.tb01014.x. DOI
Hassan MU, et al. Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities: A review. Environ. Sci. Pollut. Res. 2019;26:12673–12688. doi: 10.1007/s11356-019-04892-x. PubMed DOI
Burd GI, Dixon DG, Glick BR. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol. 1998;64:3663–3668. doi: 10.1128/AEM.64.10.3663-3668.1998. PubMed DOI PMC
Chen, C., Huang, D. & Liu, J. Functions and toxicity of nickel in plants: Recent advances and future prospects. Clean - Soil Air Water vol. 37 304–313 Preprint at 10.1002/clen.200800199 (2009).
Ramzan M, et al. Modulation of sunflower growth via regulation of antioxidants, oil content and gas exchange by arbuscular mycorrhizal fungi and quantum dot biochar under chromium stress. BMC Plant Biol. 2023;23:629. doi: 10.1186/s12870-023-04637-6. PubMed DOI PMC
Huang S, et al. Uncovering the impact of AM fungi on wheat nutrient uptake, ion homeostasis, oxidative stress, and antioxidant defense under salinity stress. Sci Rep. 2023;13:8249. doi: 10.1038/s41598-023-35148-x. PubMed DOI PMC
Zafar-ul-Hye M, et al. Compost mixed fruits and vegetable waste biochar with ACC deaminase rhizobacteria can minimize lead stress in mint plants. Sci Rep. 2021;11:6606. doi: 10.1038/s41598-021-86082-9. PubMed DOI PMC
Glick BR, Karaturovíc DM, Newell PC. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol. 1995;41:533–536. doi: 10.1139/m95-070. DOI
Syed, A. et al. Metal-tolerant and siderophore producing Pseudomonas fluorescence and Trichoderma spp. improved the growth, biochemical features and yield attributes of chickpea by lowering Cd uptake. Sci. Rep.13, 4471 (2023). PubMed PMC
Alotaibi MO, et al. Examining the role of AMF-Biochar in the regulation of spinach growth attributes, nutrients concentrations, and antioxidant enzymes in mitigating drought stress. Plant Stress. 2023;10:100205. doi: 10.1016/j.stress.2023.100205. DOI
Ma Y, et al. γ-Aminobutyric acid (GABA) and ectoine (ECT) impacts with and without AMF on antioxidants, gas exchange attributes and nutrients of cotton cultivated in salt affected soil. BMC Plant Biol. 2023;23:476. doi: 10.1186/s12870-023-04486-3. PubMed DOI PMC
Khan MS, Zaidi A, Wani PA, Oves M. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett. 2008;7:1–19. doi: 10.1007/s10311-008-0155-0. DOI
Jing Y, He Z, Yang X. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B. 2007;8:192–207. doi: 10.1631/jzus.2007.B0192. PubMed DOI PMC
Li W, et al. Exogenous γ-aminobutyric Acid (GABA) application improved early growth, net photosynthesis, and associated physio-biochemical events in maize. Front Plant Sci. 2016;7:919. PubMed PMC
Li Y, et al. GABA-mediated inhibition of cadmium uptake and accumulation in apples. Environ. Pollut. 2022;300:118867. doi: 10.1016/j.envpol.2022.118867. PubMed DOI
Hasan MM, et al. GABA: a key player in drought stress resistance in plants. Int J Mol Sci. 2021;22:10136. doi: 10.3390/ijms221810136. PubMed DOI PMC
Li L, Dou N, Zhang H, Wu C. The versatile GABA in plants. Plant Signal Behav. 2021;16:1862565. doi: 10.1080/15592324.2020.1862565. PubMed DOI PMC
Khan MIR, et al. Role of GABA in plant growth, development and senescence. Plant Gene. 2021;26:100283. doi: 10.1016/j.plgene.2021.100283. DOI
Zarbakhsh S, Shahsavar AR. Exogenous γ-aminobutyric acid improves the photosynthesis efficiency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses. BMC Plant Biol. 2023;23:543. doi: 10.1186/s12870-023-04568-2. PubMed DOI PMC
Zhu Z, et al. A novel mechanism of Gamma-aminobutyric acid (GABA) protecting human umbilical vein endothelial cells (HUVECs) against H2O2-induced oxidative injury. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 2019;217:68–75. PubMed
Sarwar, S., Hanif, M. A., Ayub, M. A., Boakye, Y. D. & Agyare, C. Fenugreek. in Medicinal Plants of South Asia 257–271 (Elsevier, 2020).
Singh, R. J. Fenugreek (Trigonella foenum-graecum L.). in Genetic Resources, Chromosome Engineering, and Crop Improvement (ed. Singh, R. J.) 825–870 (CRC Press, Boca Raton, 2011). doi:10.1201/b11177-29.
Acharya SN, Thomas JE, Basu SK. Fenugreek: an “old world” crop for the “new world”. Biodiversity. 2006;7:27–30. doi: 10.1080/14888386.2006.9712808. DOI
Srinivasan, K. Fenugreek (Trigonella foenum-graecum L.) seeds used as functional food supplements to derive diverse health benefits. in Nonvitamin and Nonmineral Nutritional Supplements 217–221 (Elsevier, 2019). 10.1016/B978-0-12-812491-8.00031-X.
Mariyam, S., Bhardwaj, R., Khan, N. A., Sahi, S. V & Seth, C. S. Review on nitric oxide at the forefront of rapid systemic signaling in mitigation of salinity stress in plants: Crosstalk with calcium and hydrogen peroxide. Plant Sci. 111835 (2023). PubMed
Kumar D, Dhankher OP, Tripathi RD, Seth CS. Titanium dioxide nanoparticles potentially regulate the mechanism(s) for photosynthetic attributes, genotoxicity, antioxidants defense machinery, and phytochelatins synthesis in relation to hexavalent chromium toxicity in Helianthus annuus L. J Hazard Mater. 2023;454:131418. doi: 10.1016/j.jhazmat.2023.131418. PubMed DOI
Agnihotri, A. & Seth, C. S. Does jasmonic acid regulate photosynthesis, clastogenecity, and phytochelatins in Brassica juncea L. in response to Pb-subcellular distribution? Chemosphere243, 125361 (2020). PubMed
Agnihotri, A., Gupta, P., Dwivedi, A. & Seth, C. S. Counteractive mechanism (s) of salicylic acid in response to lead toxicity in Brassica juncea (L.) Czern. cv. Varuna. Planta248, 49–68 (2018). PubMed
Gupta S, Seth CS. Salicylic acid alleviates chromium (VI) toxicity by restricting its uptake, improving photosynthesis and augmenting antioxidant defense in Solanum lycopersicum L. Physiol. Mol. Biol. Plants. 2021;27:2651–2664. doi: 10.1007/s12298-021-01088-x. PubMed DOI PMC
Shahi Khalaf Ansar, B. et al. Removal of organic and inorganic contaminants from the air, soil, and water by algae. Environ. Sci. Pollut. Res.30, 116538–116566 (2022). PubMed
Asgari Lajayer, B., Ghorbanpour, M. & Nikabadi, S. Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol. Environ. Saf.145, 377–390 (2017). PubMed
Aqeel, U., Parwez, R., Aftab, T., Khan, M. M. A. & Naeem, M. Exogenous calcium repairs damage caused by nickel toxicity in fenugreek (Trigonella foenum-graecum L.) by strengthening its antioxidant defense system and other functional attributes. S. Afr. J. Bot.150, 153–160 (2022).
Glickmann E, Dessaux Y. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol. 1995;61:793–796. doi: 10.1128/aem.61.2.793-796.1995. PubMed DOI PMC
Dworkin M, Foster JW. Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol. 1958;75:592–603. doi: 10.1128/jb.75.5.592-603.1958. PubMed DOI PMC
Vazquez FJ, Acea MJ, Carballas T. Soil microbial populations after wildfire. FEMS Microbiol Ecol. 1993;13:93–103. doi: 10.1111/j.1574-6941.1993.tb00055.x. DOI
Setiawati TC, Mutmainnah L. Solubilization of potassium containing mineral by microorganisms from sugarcane rhizosphere. Italian Oral Surg. 2016;9:108–117.
Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949;24:1–15. doi: 10.1104/pp.24.1.1. PubMed DOI PMC
Nazar R, Khan MIR, Iqbal N, Masood A, Khan NA. Involvement of ethylene in reversal of salt-inhibited photosynthesis by sulfur in mustard. Physiol Plant. 2014;152:331–344. doi: 10.1111/ppl.12173. PubMed DOI
Dhindsa RS, Plumb-Dhindsa PL, Reid DM. Leaf senescence and lipid peroxidation: Effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiol Plant. 1982;56:453–457. doi: 10.1111/j.1399-3054.1982.tb04539.x. DOI
Hori M, et al. Changes in the hepatic glutathione peroxidase redox system produced by coplanar polychlorinated biphenyls in Ah-responsive and-less-responsive strains of mice: mechanism and implications for toxicity. Environ Toxicol Pharmacol. 1997;3:267–275. doi: 10.1016/S1382-6689(97)00025-2. PubMed DOI
Aebi, H. Catalase in vitro. in Oxygen Radicals in Biological Systems: Methods in Enzymology (ed. Packer, L.) vol. 105 121–126 (Elsevier BV, 1984). PubMed
Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–880.
Lutts, S., Kinet, J. M. & Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot.78, 389–398 (1996).
Mills, H. A. & Jones, J. B. Jr. Plant Analysis Handbook II: A Practical Sampling, Preparation, Analysis, and Interpretation Guide. Plant analysis handbook. A practical sampling, preparation, analysis, and interpretation guide. (Micro-Macro Publishing, Inc., USA, 1991).
Steyermark AL, McGee BE. Progress in elemental quantitative organic analysis: 1960. Microchem. J. 1961;5:389–410. doi: 10.1016/0026-265X(61)90010-8. DOI
Miller, R. Nitric-perchloric Acid Wet Digestion In An Open Vessel. in Handbook of Reference Methods for Plant Analysis (ed. Kalra, Y.) 57–62 (CRC Press, Washington, D.C., 1997). 10.1201/9781420049398.ch6.
Hanlon, E. A. Elemental determination by atomic absorption spectrophotometery. in Handbook of Reference Methods for Plant Analysis (ed. Kalra, Y.) 157–164 (CRC Press, Washington D.C., 1998).
OriginLab Corporation. OriginPro. (OriginLab, Northampton, MA, USA., 2021).
Kanta Sahu, R., Kar, M. & Routray, R. DPPH free radical scavenging activity of some leafy vegetables used by tribals of Odisha, India. J. Med. Plants Stud. Year1, 21–27 (2013).
Ashraf, M. Y., Sadiq, R., Hussain, M., Ashraf, M. & Ahmad, M. S. A. Toxic effect of nickel (Ni) on growth and metabolism in germinating seeds of sunflower (Helianthus annuus L.). Biol Trace Elem. Res143, 1695–1703 (2011). PubMed
Ahmad, M. S. A., Riffat, A., Hussain, M., Hameed, M. & Alvi, A. K. Toxicity and tolerance of nickel in sunflower (Helianthus annuus L.). Environ. Sci. Pollut. Res.30, 50346–50363 (2023). PubMed
Shahzad B, et al. Nickel; whether toxic or essential for plants and environment: A review. Plant Physiol. Biochem. 2018;132:641–651. doi: 10.1016/j.plaphy.2018.10.014. PubMed DOI
Ahmad, M. S. A. & Ashraf, M. Essential roles and hazardous effects of nickel in plants. in 125–167 (2012). 10.1007/978-1-4614-0668-6_6. PubMed
Abbas, S. et al. Nutrient deficiency stress and relation with plant growth and development. in Engineering Tolerance in Crop Plants Against Abiotic Stress 239–262 (CRC Press, Boca Raton, 2021). 10.1201/9781003160717-12.
Kumari S, et al. γ-Aminobutyric acid (GABA) strengthened nutrient accumulation, defense metabolism, growth and yield traits against salt and endoplasmic reticulum stress conditions in wheat plants. Plant Soil. 2024 doi: 10.1007/s11104-023-06444-2. DOI
Ansari MI, Jalil SU, Ansari SA, Hasanuzzaman M. GABA shunt: a key-player in mitigation of ROS during stress. Plant Growth Regul. 2021;94:131–149. doi: 10.1007/s10725-021-00710-y. DOI
Li W, et al. Exogenous γ-aminobutyric acid (GABA) application improved early growth, net photosynthesis, and associated physio-biochemical events in maize. Front Plant Sci. 2016;22:919. PubMed PMC
Mahmud, J. Al et al. Reactive oxygen species metabolism and antioxidant defense in plants under metal/metalloid stress. in Plant Abiotic Stress Tolerance 221–257 (Springer, 2019). 10.1007/978-3-030-06118-0_10.
Baude J, et al. Coordinated regulation of species-specific hydroxycinnamic acid degradation and siderophore biosynthesis pathways in Agrobacterium fabrum. Appl Environ Microbiol. 2016;82:3515–3524. doi: 10.1128/AEM.00419-16. PubMed DOI PMC
Zafar-ul-Hye M, Danish S, Abbas M, Ahmad M, Munir TM. ACC deaminase producing PGPR Bacillus amyloliquefaciens and agrobacterium fabrum along with biochar improve wheat productivity under drought stress. Agronomy. 2019;9:343. doi: 10.3390/agronomy9070343. DOI
Matile P, Schellenberg M, Vicentini F. Localization of chlorophyllase in the chloroplast envelope. Planta. 1997;201:96–99. doi: 10.1007/BF01258685. DOI
Asgari Lajayer, B., Khadem Moghadam, N., Maghsoodi, M. R., Ghorbanpour, M. & Kariman, K. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Environ. Sci. Pollut. Res.26, 8468–8484 (2019). PubMed
Zafar-ul-Hye M, et al. Rhizobacteria having ACC-deaminase and biogas slurry can mitigate salinity adverse effects in wheat. Pak J Bot. 2022;54:297–303. doi: 10.30848/PJB2022-1(7). DOI
Fujita H, Aoki S, Kawaguchi M. Evolutionary dynamics of nitrogen fixation in the legume-rhizobia symbiosis. PLoS One. 2014;9:e93670. doi: 10.1371/journal.pone.0093670. PubMed DOI PMC
Popovici, G. Bibliographie centrée sur les usages des tic et numériques. Sélection de ressources de la MSH Paris Nord université Paris 8, université Paris 13. Les cahiers du numérique9, 137–161 (2013).
Parwez, R., Aftab, T., Khan, M. M. A. & Naeem, M. Exogenous abscisic acid fine-tunes heavy metal accumulation and plant’s antioxidant defence mechanism to optimize crop performance and secondary metabolite production in Trigonella foenum-graecum L. under nickel stress. Plant Sci.332, 111703 (2023). PubMed
Bogati K, Walczak M. The impact of drought stress on soil microbial community, enzyme activities and plants. Agronomy. 2022;12:189. doi: 10.3390/agronomy12010189. DOI