The Central Effects of Botulinum Toxin in Dystonia and Spasticity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
NV16-30210A; NV17-29452A
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
33671128
PubMed Central
PMC7922085
DOI
10.3390/toxins13020155
PII: toxins13020155
Knihovny.cz E-zdroje
- Klíčová slova
- botulinum toxin, dystonia, electrophysiology, functional magnetic resonance imaging, neural plasticity, spasticity,
- MeSH
- botulotoxiny typ A škodlivé účinky terapeutické užití MeSH
- dystonie diagnóza farmakoterapie patofyziologie MeSH
- kosterní svaly inervace MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku MeSH
- mozková kůra diagnostické zobrazování účinky léků patofyziologie MeSH
- nervosvalové látky škodlivé účinky terapeutické užití MeSH
- neuroplasticita účinky léků MeSH
- obnova funkce MeSH
- pohybová aktivita účinky léků MeSH
- výsledek terapie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- botulotoxiny typ A MeSH
- nervosvalové látky MeSH
In dystonic and spastic movement disorders, however different in their pathophysiological mechanisms, a similar impairment of sensorimotor control with special emphasis on afferentation is assumed. Peripheral intervention on afferent inputs evokes plastic changes within the central sensorimotor system. Intramuscular application of botulinum toxin type A (BoNT-A) is a standard evidence-based treatment for both conditions. Apart from its peripheral action on muscle spindles, a growing body of evidence suggests that BoNT-A effects could also be mediated by changes at the central level including cerebral cortex. We review recent studies employing electrophysiology and neuroimaging to investigate how intramuscular application of BoNT-A influences cortical reorganization. Based on such data, BoNT-A becomes gradually accepted as a promising tool to correct the maladaptive plastic changes within the sensorimotor cortex. In summary, electrophysiology and especially neuroimaging studies with BoNT-A further our understanding of pathophysiology underlying dystonic and spastic movement disorders and may consequently help develop novel treatment strategies based on neural plasticity.
Zobrazit více v PubMed
Schiavo G., Matteoli M., Montecucco C. Neurotoxins Affecting Neuroexocytosis. Physiol. Rev. 2000;80:717–766. doi: 10.1152/physrev.2000.80.2.717. PubMed DOI
Caleo M., Restani L. Exploiting Botulinum Neurotoxins for the Study of Brain Physiology and Pathology. Toxins. 2018;10:175. doi: 10.3390/toxins10050175. PubMed DOI PMC
Weise D., Weise C.M., Naumann M. Central Effects of Botulinum Neurotoxin-Evidence from Human Studies. Toxins. 2019;11:21. doi: 10.3390/toxins11010021. PubMed DOI PMC
Dressler D., Bhidayasiri R., Bohlega S., Chahidi A., Chung T.M., Ebke M., Jacinto L.J., Kaji R., Koçer S., Kanovsky P., et al. Botulinum Toxin Therapy for Treatment of Spasticity in Multiple Sclerosis: Review and Recommendations of the IAB-Interdisciplinary Working Group for Movement Disorders Task Force. J. Neurol. 2017;264:112–120. doi: 10.1007/s00415-016-8304-z. PubMed DOI
Rosales R.L., Kanovsky P., Fernandez H.H. What’s the “Catch” in Upper-Limb Post-Stroke Spasticity: Expanding the Role of Botulinum Toxin Applications. Parkinsonism Relat. Disord. 2011;17(Suppl. 1):S3–S10. doi: 10.1016/j.parkreldis.2011.06.019. PubMed DOI
Simpson D.M., Hallett M., Ashman E.J., Comella C.L., Green M.W., Gronseth G.S., Armstrong M.J., Gloss D., Potrebic S., Jankovic J., et al. Practice Guideline Update Summary: Botulinum Neurotoxin for the Treatment of Blepharospasm, Cervical Dystonia, Adult Spasticity, and Headache: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2016;86:1818–1826. doi: 10.1212/WNL.0000000000002560. PubMed DOI PMC
Dressler D., Saberi F.A., Rosales R.L. Botulinum Toxin Therapy of Dystonia. J. Neural Transm. Vienna Austria 1996. 2020 doi: 10.1007/s00702-020-02266-z. PubMed DOI PMC
Antonucci F., Rossi C., Gianfranceschi L., Rossetto O., Caleo M. Long-Distance Retrograde Effects of Botulinum Neurotoxin A. J. Neurosci. 2008;28:3689–3696. doi: 10.1523/JNEUROSCI.0375-08.2008. PubMed DOI PMC
Currà A., Berardelli A. Do the Unintended Actions of Botulinum Toxin at Distant Sites Have Clinical Implications? Neurology. 2009;72:1095–1099. doi: 10.1212/01.wnl.0000345010.98495.fc. PubMed DOI
Rosales R.L., Dressler D. On Muscle Spindles, Dystonia and Botulinum Toxin. Eur. J. Neurol. Off. J. Eur. Fed. Neurol. Soc. 2010;17(Suppl. 1):71–80. doi: 10.1111/j.1468-1331.2010.03056.x. PubMed DOI
Currà A., Trompetto C., Abbruzzese G., Berardelli A. Central Effects of Botulinum Toxin Type A: Evidence and Supposition. Mov. Disord. 2004;19(Suppl. 8):S60–S64. doi: 10.1002/mds.20011. PubMed DOI
Giladi N. The Mechanism of Action of Botulinum Toxin Type A in Focal Dystonia Is Most Probably through Its Dual Effect on Efferent (Motor) and Afferent Pathways at the Injected Site. J. Neurol. Sci. 1997;152:132–135. doi: 10.1016/S0022-510X(97)00151-2. PubMed DOI
Albanese A., Bhatia K., Bressman S.B., Delong M.R., Fahn S., Fung V.S.C., Hallett M., Jankovic J., Jinnah H.A., Klein C., et al. Phenomenology and Classification of Dystonia: A Consensus Update. Mov. Disord. Off. J. Mov. Disord. Soc. 2013;28:863–873. doi: 10.1002/mds.25475. PubMed DOI PMC
Pandyan A.D., Gregoric M., Barnes M.P., Wood D., Van Wijck F., Burridge J., Hermens H., Johnson G.R. Spasticity: Clinical Perceptions, Neurological Realities and Meaningful Measurement. Disabil. Rehabil. 2005;27:2–6. doi: 10.1080/09638280400014576. PubMed DOI
Di Pino G., Pellegrino G., Assenza G., Capone F., Ferreri F., Formica D., Ranieri F., Tombini M., Ziemann U., Rothwell J.C., et al. Modulation of Brain Plasticity in Stroke: A Novel Model for Neurorehabilitation. Nat. Rev. Neurol. 2014;10:597–608. doi: 10.1038/nrneurol.2014.162. PubMed DOI
Matthews P.M. An introduction to functional magnetic resonance imaging of the brain. In: Jezzard P., Matthews P.M., Smith S.M., editors. Functional MRI: An Introduction to Methods. Oxford University Press; Oxford, UK: New York, NY, USA: 2001. pp. 3–34.
Liepert J., Schwenkreis P., Tegenthoff M., Malin J.P. The Glutamate Antagonist Riluzole Suppresses Intracortical Facilitation. J. Neural Transm. Vienna Austria 1996. 1997;104:1207–1214. doi: 10.1007/BF01294721. PubMed DOI
Kaňovský P., Streitová H., Dufek J., Rektor I. Lateralization of the P22/N30 Component of Somatosensory Evoked Potentials of the Median Nerve in Patients with Cervical Dystonia. Mov. Disord. 1997;12:553–560. doi: 10.1002/mds.870120412. PubMed DOI
Ziemann U., Lönnecker S., Steinhoff B.J., Paulus W. Effects of Antiepileptic Drugs on Motor Cortex Excitability in Humans: A Transcranial Magnetic Stimulation Study. Ann. Neurol. 1996;40:367–378. doi: 10.1002/ana.410400306. PubMed DOI
Chen R., Corwell B., Yaseen Z., Hallett M., Cohen L.G. Mechanisms of Cortical Reorganization in Lower-Limb Amputees. J. Neurosci. 1998;18:3443–3450. doi: 10.1523/JNEUROSCI.18-09-03443.1998. PubMed DOI PMC
Cohen L.G., Bandinelli S., Findley T.W., Hallett M. Motor Reorganization after Upper Limb Amputation in Man. A Study with Focal Magnetic Stimulation. Pt 1BBrain. 1991;114:615–627. doi: 10.1093/brain/114.1.615. PubMed DOI
Fuhr P., Cohen L.G., Dang N., Findley T.W., Haghighi S., Oro J., Hallett M. Physiological Analysis of Motor Reorganization Following Lower Limb Amputation. Electroencephalogr. Clin. Neurophysiol. 1992;85:53–60. doi: 10.1016/0168-5597(92)90102-H. PubMed DOI
Ridding M.C., Rothwell J.C. Stimulus/Response Curves as a Method of Measuring Motor Cortical Excitability in Man. Electroencephalogr. Clin. Neurophysiol. 1997;105:340–344. doi: 10.1016/S0924-980X(97)00041-6. PubMed DOI
Rosenkranz K., Rothwell J.C. Differences between the Effects of Three Plasticity Inducing Protocols on the Organization of the Human Motor Cortex. Eur. J. Neurosci. 2006;23:822–829. doi: 10.1111/j.1460-9568.2006.04605.x. PubMed DOI
Brasil-Neto J.P., Valls-Solé J., Pascual-Leone A., Cammarota A., Amassian V.E., Cracco R., Maccabee P., Cracco J., Hallett M., Cohen L.G. Rapid Modulation of Human Cortical Motor Outputs Following Ischaemic Nerve Block. Brain J. Neurol. 1993;116 Pt 3:511–525. doi: 10.1093/brain/116.3.511. PubMed DOI
Ziemann U., Hallett M., Cohen L.G. Mechanisms of Deafferentation-Induced Plasticity in Human Motor Cortex. J. Neurosci. 1998;18:7000–7007. doi: 10.1523/JNEUROSCI.18-17-07000.1998. PubMed DOI PMC
Ziemann U., Corwell B., Cohen L.G. Modulation of Plasticity in Human Motor Cortex after Forearm Ischemic Nerve Block. J. Neurosci. 1998;18:1115–1123. doi: 10.1523/JNEUROSCI.18-03-01115.1998. PubMed DOI PMC
Brasil-Neto J.P., Cohen L.G., Pascual-Leone A., Jabir F.K., Wall R.T., Hallett M. Rapid Reversible Modulation of Human Motor Outputs after Transient Deafferentation of the Forearm: A Study with Transcranial Magnetic Stimulation. Neurology. 1992;42:1302–1306. doi: 10.1212/WNL.42.7.1302. PubMed DOI
Ziemann U., Muellbacher W., Hallett M., Cohen L.G. Modulation of Practice-Dependent Plasticity in Human Motor Cortex. Brain. 2001;124:1171–1181. doi: 10.1093/brain/124.6.1171. PubMed DOI
Muellbacher W., Richards C., Ziemann U., Wittenberg G., Weltz D., Boroojerdi B., Cohen L., Hallett M. Improving Hand Function in Chronic Stroke. Arch. Neurol. 2002;59:1278–1282. doi: 10.1001/archneur.59.8.1278. PubMed DOI
Werhahn K.J., Mortensen J., Kaelin-Lang A., Boroojerdi B., Cohen L.G. Cortical Excitability Changes Induced by Deafferentation of the Contralateral Hemisphere. Brain. 2002;125:1402–1413. doi: 10.1093/brain/awf140. PubMed DOI
Floel A., Nagorsen U., Werhahn K.J., Ravindran S., Birbaumer N., Knecht S., Cohen L.G. Influence of Somatosensory Input on Motor Function in Patients with Chronic Stroke. Ann. Neurol. 2004;56:206–212. doi: 10.1002/ana.20170. PubMed DOI
Rossini P.M., Rossi S., Tecchio F., Pasqualetti P., Finazzi-Agrò A., Sabato A. Focal Brain Stimulation in Healthy Humans: Motor Maps Changes Following Partial Hand Sensory Deprivation. Neurosci. Lett. 1996;214:191–195. doi: 10.1016/0304-3940(96)12940-2. PubMed DOI
Liepert J., Tegenthoff M., Malin J.P. Changes of Cortical Motor Area Size during Immobilization. Electroencephalogr. Clin. Neurophysiol. 1995;97:382–386. doi: 10.1016/0924-980X(95)00194-P. PubMed DOI
Palomar F.J., Mir P. Neurophysiological Changes after Intramuscular Injection of Botulinum Toxin. Clin. Neurophysiol. 2012;123:54–60. doi: 10.1016/j.clinph.2011.05.032. PubMed DOI
Kim D.-Y., Oh B.-M., Paik N.-J. Central Effect of Botulinum Toxin Type A in Humans. Int. J. Neurosci. 2006;116:667–680. doi: 10.1080/00207450600674525. PubMed DOI
Grünewald R.A., Yoneda Y., Shipman J.M., Sagar H.J. Idiopathic Focal Dystonia: A Disorder of Muscle Spindle Afferent Processing? Brain. 1997;120 Pt 12:2179–2185. doi: 10.1093/brain/120.12.2179. PubMed DOI
Rome S., Grünewald R.A. Abnormal Perception of Vibration-Induced Illusion of Movement in Dystonia. Neurology. 1999;53:1794–1800. doi: 10.1212/WNL.53.8.1794. PubMed DOI
Kaňovský P., Streitová H., Dufek J., Znojil V., Daniel P., Rektor I. Change in Lateralization of the P22/N30 Cortical Component of Median Nerve Somatosensory Evoked Potentials in Patients with Cervical Dystonia after Successful Treatment with Botulinum Toxin A. Mov. Disord. 1998;13:108–117. doi: 10.1002/mds.870130122. PubMed DOI
Contarino M.F., Kruisdijk J.J.M., Koster L., de Visser B.W.O., Speelman J.D., Koelman J.H.T.M. Sensory Integration in Writer’s Cramp: Comparison with Controls and Evaluation of Botulinum Toxin Effect. Clin. Neurophysiol. 2007;118:2195–2206. doi: 10.1016/j.clinph.2007.07.004. PubMed DOI
Kaňovský P., Bareš M., Streitová H., Klajblová H., Daniel P., Rektor I. Abnormalities of Cortical Excitability and Cortical Inhibition in Cervical Dystonia Evidence from Somatosensory Evoked Potentials and Paired Transcranial Magnetic Stimulation Recordings. J. Neurol. 2003;250:42–50. doi: 10.1007/s00415-003-0942-2. PubMed DOI
Kaňovský P., Bareš M., Streitová H., Klajblová H., Daniel P., Rektor I. The Disorder of Cortical Excitability and Cortical Inhibition in Focal Dystonia Is Normalised Following Successful Botulinum Toxin Treatment: An Evidence from Somatosensory Evoked Potentials and Transcranial Magnetic Stimulation Recordings. Mov. Disord. 2004;19:S78–S79.
Ridding M.C., Sheean G., Rothwell J.C., Inzelberg R., Kujirai T. Changes in the Balance between Motor Cortical Excitation and Inhibition in Focal, Task Specific Dystonia. J. Neurol. Neurosurg. Psychiatry. 1995;59:493–498. doi: 10.1136/jnnp.59.5.493. PubMed DOI PMC
Gilio F., Currà A., Lorenzano C., Modugno N., Manfredi M., Berardelli A. Effects of Botulinum Toxin Type A on Intracortical Inhibition in Patients with Dystonia. Ann. Neurol. 2000;48:20–26. doi: 10.1002/1531-8249(200007)48:1<20::AID-ANA5>3.0.CO;2-U. PubMed DOI
Boroojerdi B., Cohen L.G., Hallett M. Effects of Botulinum Toxin on Motor System Excitability in Patients with Writer’s Cramp. Neurology. 2003;61:1546–1550. doi: 10.1212/01.WNL.0000095965.36574.0F. PubMed DOI
Allam N., de Oliva Fonte-Boa P.M., Tomaz C.A.B., Brasil-Neto J.P. Lack of Effect of Botulinum Toxin on Cortical Excitability in Patients with Cranial Dystonia. Clin. Neuropharmacol. 2005;28:1–5. doi: 10.1097/01.wnf.0000152044.43822.42. PubMed DOI
Suppa A., Marsili L., Giovannelli F., Stasio F.D., Rocchi L., Upadhyay N., Ruoppolo G., Cincotta M., Berardelli A. Abnormal Motor Cortex Excitability during Linguistic Tasks in Adductor-Type Spasmodic Dysphonia. Eur. J. Neurosci. 2015;42:2051–2060. doi: 10.1111/ejn.12977. PubMed DOI
Byrnes M.L., Mastaglia F.L., Walters S.E., Archer S.-A.R., Thickbroom G.W. Primary Writing Tremor: Motor Cortex Reorganisation and Disinhibition. J. Clin. Neurosci. 2005;12:102–104. doi: 10.1016/j.jocn.2004.08.004. PubMed DOI
Byrnes M.L., Thickbroom G.W., Wilson S.A., Sacco P., Shipman J.M., Stell R., Mastaglia F.L. The Corticomotor Representation of Upper Limb Muscles in Writer’s Cramp and Changes Following Botulinum Toxin Injection. Brain. 1998;121 Pt 5:977–988. doi: 10.1093/brain/121.5.977. PubMed DOI
Thickbroom G.W., Byrnes M.L., Stell R., Mastaglia F.L. Reversible Reorganisation of the Motor Cortical Representation of the Hand in Cervical Dystonia. Mov. Disord. 2003;18:395–402. doi: 10.1002/mds.10383. PubMed DOI
Trompetto C., Currà A., Buccolieri A., Suppa A., Abbruzzese G., Berardelli A. Botulinum Toxin Changes Intrafusal Feedback in Dystonia: A Study with the Tonic Vibration Reflex. Mov. Disord. 2006;21:777–782. doi: 10.1002/mds.20801. PubMed DOI
Romaiguère P., Vedel J.P., Azulay J.P., Pagni S. Differential Activation of Motor Units in the Wrist Extensor Muscles during the Tonic Vibration Reflex in Man. J. Physiol. 1991;444:645–667. doi: 10.1113/jphysiol.1991.sp018899. PubMed DOI PMC
Urban P.P., Rolke R. Effects of Botulinum Toxin Type A on Vibration Induced Facilitation of Motor Evoked Potentials in Spasmodic Torticollis. J. Neurol. Neurosurg. Psychiatry. 2004;75:1541–1546. doi: 10.1136/jnnp.2003.029215. PubMed DOI PMC
Kossev A., Siggelkow S., Schubert M., Wohlfarth K., Dengler R. Muscle Vibration: Different Effects on Transcranial Magnetic and Electrical Stimulation. Muscle Nerve. 1999;22:946–948. doi: 10.1002/(SICI)1097-4598(199907)22:7<946::AID-MUS22>3.0.CO;2-O. PubMed DOI
Rosenkranz K., Rothwell J.C. Differential Effect of Muscle Vibration on Intracortical Inhibitory Circuits in Humans. J. Physiol. 2003;551:649–660. doi: 10.1113/jphysiol.2003.043752. PubMed DOI PMC
Weise D., Schramm A., Beck M., Reiners K., Classen J. Loss of Topographic Specificity of LTD-like Plasticity Is a Trait Marker in Focal Dystonia. Neurobiol. Dis. 2011;42:171–176. doi: 10.1016/j.nbd.2010.11.009. PubMed DOI
Weise D., Schramm A., Stefan K., Wolters A., Reiners K., Naumann M., Classen J. The Two Sides of Associative Plasticity in Writer’s Cramp. Brain. 2006;129:2709–2721. doi: 10.1093/brain/awl221. PubMed DOI
Kojovic M., Caronni A., Bologna M., Rothwell J.C., Bhatia K.P., Edwards M.J. Botulinum Toxin Injections Reduce Associative Plasticity in Patients with Primary Dystonia. Mov. Disord. 2011;26:1282–1289. doi: 10.1002/mds.23681. PubMed DOI PMC
Hu W., Rundle-Gonzalez V., Kulkarni S.J., Martinez-Ramirez D., Almeida L., Okun M.S., Wagle Shukla A. A Randomized Study of Botulinum Toxin versus Botulinum Toxin plus Physical Therapy for Treatment of Cervical Dystonia. Parkinsonism Relat. Disord. 2019;63:195–198. doi: 10.1016/j.parkreldis.2019.02.035. PubMed DOI
Frascarelli F., Di Rosa G., Bisozzi E., Castelli E., Santilli V. Neurophysiological Changes Induced by the Botulinum Toxin Type A Injection in Children with Cerebral Palsy. Eur. J. Paediatr. Neurol. 2011;15:59–64. doi: 10.1016/j.ejpn.2010.04.002. PubMed DOI
Park E.S., Park C.I., Kim D.Y., Kim Y.R. The Effect of Spasticity on Cortical Somatosensory-Evoked Potentials: Changes of Cortical Somatosensory-Evoked Potentials after Botulinum Toxin Type A Injection. Arch. Phys. Med. Rehabil. 2002;83:1592–1596. doi: 10.1053/apmr.2002.34623. PubMed DOI
Basaran A., Emre U., Karadavut K.I., Bulmus N. Somatosensory Evoked Potentials of Hand Muscles in Stroke and Their Modification by Botulinum Toxin: A Preliminary Study. J. Rehabil. Med. 2012;44:541–546. doi: 10.2340/16501977-0978. PubMed DOI
Hluštík P., Veverka T., Hok P., Otruba P., Krobot A., Zapletalová J., Kaňovský P. P06-Cortical Somatosensory Processing after Botulinum Toxin Therapy in Post-Stroke Spasticity. Clin. Neurophysiol. 2018;129:e15. doi: 10.1016/j.clinph.2018.01.051. PubMed DOI PMC
Trompetto C., Bove M., Avanzino L., Francavilla G., Berardelli A., Abbruzzese G. Intrafusal Effects of Botulinum Toxin in Post-Stroke Upper Limb Spasticity. Eur. J. Neurol. 2008;15:367–370. doi: 10.1111/j.1468-1331.2008.02076.x. PubMed DOI
Pauri F., Boffa L., Cassetta E., Pasqualetti P., Rossini P.M. Botulinum Toxin Type-A Treatment in Spastic Paraparesis: A Neurophysiological Study. J. Neurol. Sci. 2000;181:89–97. doi: 10.1016/S0022-510X(00)00439-1. PubMed DOI
Redman T.A., Gibson N., Finn J.C., Bremner A.P., Valentine J., Thickbroom G.W. Upper Limb Corticomotor Projections and Physiological Changes That Occur with Botulinum Toxin-A Therapy in Children with Hemiplegic Cerebral Palsy. Eur. J. Neurol. 2008;15:787–791. doi: 10.1111/j.1468-1331.2008.02194.x. PubMed DOI
Phadke C.P., Ismail F., Boulias C. Assessing the Neurophysiological Effects of Botulinum Toxin Treatment for Adults with Focal Limb Spasticity: A Systematic Review. Disabil. Rehabil. 2012;34:91–100. doi: 10.3109/09638288.2011.591882. PubMed DOI
Burciu R.G., Hess C.W., Coombes S.A., Ofori E., Shukla P., Chung J.W., McFarland N.R., Wagle Shukla A., Okun M.S., Vaillancourt D.E. Functional Activity of the Sensorimotor Cortex and Cerebellum Relates to Cervical Dystonia Symptoms. Hum. Brain Mapp. 2017;38:4563–4573. doi: 10.1002/hbm.23684. PubMed DOI PMC
de Vries P.M., Johnson K.A., de Jong B.M., Gieteling E.W., Bohning D.E., George M.S., Leenders K.L. Changed Patterns of Cerebral Activation Related to Clinically Normal Hand Movement in Cervical Dystonia. Clin. Neurol. Neurosurg. 2008;110:120–128. doi: 10.1016/j.clineuro.2007.09.020. PubMed DOI
Obermann M., Vollrath C., de Greiff A., Gizewski E.R., Diener H.-C., Hallett M., Maschke M. Sensory Disinhibition on Passive Movement in Cervical Dystonia. Mov. Disord. 2010;25:2627–2633. doi: 10.1002/mds.23321. PubMed DOI
Obermann M., Yaldizli O., de Greiff A., Konczak J., Lachenmayer M.L., Tumczak F., Buhl A.R., Putzki N., Vollmer-Haase J., Gizewski E.R., et al. Increased Basal-Ganglia Activation Performing a Non-Dystonia-Related Task in Focal Dystonia. Eur. J. Neurol. 2008;15:831–838. doi: 10.1111/j.1468-1331.2008.02196.x. PubMed DOI
Feiwell R.J., Black K.J., McGee-Minnich L.A., Snyder A.Z., MacLeod A.M., Perlmutter J.S. Diminished Regional Cerebral Blood Flow Response to Vibration in Patients with Blepharospasm. Neurology. 1999;52:291–297. doi: 10.1212/WNL.52.2.291. PubMed DOI
Castrop F., Dresel C., Hennenlotter A., Zimmer C., Haslinger B. Basal Ganglia-Premotor Dysfunction during Movement Imagination in Writer’s Cramp. Mov. Disord. 2012;27:1432–1439. doi: 10.1002/mds.24944. PubMed DOI
Dresel C., Bayer F., Castrop F., Rimpau C., Zimmer C., Haslinger B. Botulinum Toxin Modulates Basal Ganglia but Not Deficient Somatosensory Activation in Orofacial Dystonia. Mov. Disord. 2011;26:1496–1502. doi: 10.1002/mds.23497. PubMed DOI
Opavský R., Hluštík P., Otruba P., Kaňovský P. Somatosensory Cortical Activation in Cervical Dystonia and Its Modulation With Botulinum Toxin: An FMRI Study. Int. J. Neurosci. 2012;122:45–52. doi: 10.3109/00207454.2011.623807. PubMed DOI
Mantel T., Dresel C., Welte M., Meindl T., Jochim A., Zimmer C., Haslinger B. Altered Sensory System Activity and Connectivity Patterns in Adductor Spasmodic Dysphonia. Sci. Rep. 2020;10:10179. doi: 10.1038/s41598-020-67295-w. PubMed DOI PMC
Ceballos-Baumann A.O., Sheean G., Passingham R.E., Marsden C.D., Brooks D.J. Botulinum Toxin Does Not Reverse the Cortical Dysfunction Associated with Writer’s Cramp. A PET Study. Pt 4Brain. 1997;120:571–582. doi: 10.1093/brain/120.4.571. PubMed DOI
Haslinger B., Erhard P., Dresel C., Castrop F., Roettinger M., Ceballos-Baumann A.O. “Silent Event-Related” FMRI Reveals Reduced Sensorimotor Activation in Laryngeal Dystonia. Neurology. 2005;65:1562–1569. doi: 10.1212/01.wnl.0000184478.59063.db. PubMed DOI
Ali S.O., Thomassen M., Schulz G.M., Hosey L.A., Varga M., Ludlow C.L., Braun A.R. Alterations in CNS Activity Induced by Botulinum Toxin Treatment in Spasmodic Dysphonia: An H215O PET Study. J. Speech Lang. Hear. Res. 2006;49:1127–1146. doi: 10.1044/1092-4388(2006/081). PubMed DOI
Dresel C., Haslinger B., Castrop F., Wohlschlaeger A.M., Ceballos-Baumann A.O. Silent Event-Related FMRI Reveals Deficient Motor and Enhanced Somatosensory Activation in Orofacial Dystonia. Brain. 2006;129:36–46. doi: 10.1093/brain/awh665. PubMed DOI
Opavský R., Hluštík P., Otruba P., Kaňovský P. Sensorimotor Network in Cervical Dystonia and the Effect of Botulinum Toxin Treatment: A Functional MRI Study. J. Neurol. Sci. 2011;306:71–75. doi: 10.1016/j.jns.2011.03.040. PubMed DOI
Nevrlý M., Hluštík P., Hok P., Otruba P., Tüdös Z., Kaňovský P. Changes in Sensorimotor Network Activation after Botulinum Toxin Type A Injections in Patients with Cervical Dystonia: A Functional MRI Study. Exp. Brain Res. 2018;236:2627–2637. doi: 10.1007/s00221-018-5322-3. PubMed DOI PMC
Suzuki Y., Mizoguchi S., Kiyosawa M., Mochizuki M., Ishiwata K., Wakakura M., Ishii K. Glucose Hypermetabolism in the Thalamus of Patients with Essential Blepharospasm. J. Neurol. 2007;254:890–896. doi: 10.1007/s00415-006-0468-5. PubMed DOI
Mohammadi B., Kollewe K., Samii A., Beckmann C.F., Dengler R., Münte T.F. Changes in Resting-State Brain Networks in Writer’s Cramp. Hum. Brain Mapp. 2012;33:840–848. doi: 10.1002/hbm.21250. PubMed DOI PMC
Delnooz C.C.S., Pasman J.W., Beckmann C.F., van de Warrenburg B.P.C. Task-Free Functional MRI in Cervical Dystonia Reveals Multi-Network Changes That Partially Normalize with Botulinum Toxin. PLoS ONE. 2013;8:e62877. doi: 10.1371/journal.pone.0062877. PubMed DOI PMC
Delnooz C.C.S., Pasman J.W., Beckmann C.F., van de Warrenburg B.P.C. Altered Striatal and Pallidal Connectivity in Cervical Dystonia. Brain Struct. Funct. 2015;220:513–523. doi: 10.1007/s00429-013-0671-y. PubMed DOI
Jochim A., Li Y., Gora-Stahlberg G., Mantel T., Berndt M., Castrop F., Dresel C., Haslinger B. Altered Functional Connectivity in Blepharospasm/Orofacial Dystonia. Brain Behav. 2018;8:e00894. doi: 10.1002/brb3.894. PubMed DOI PMC
Brodoehl S., Wagner F., Prell T., Klingner C., Witte O.W., Günther A. Cause or Effect: Altered Brain and Network Activity in Cervical Dystonia Is Partially Normalized by Botulinum Toxin Treatment. NeuroImage Clin. 2019;22:101792. doi: 10.1016/j.nicl.2019.101792. PubMed DOI PMC
Hok P., Hvizdošová L., Otruba P., Kaiserová M., Trnečková M., Tüdös Z., Hluštík P., Kaňovský P., Nevrlý M. Botulinum Toxin Injection Changes Resting State Cerebellar Connectivity in Cervical Dystonia. under review. PubMed PMC
Rosenkranz K., Williamon A., Butler K., Cordivari C., Lees A.J., Rothwell J.C. Pathophysiological Differences between Musician’s Dystonia and Writer’s Cramp. Brain. 2005;128:918–931. doi: 10.1093/brain/awh402. PubMed DOI
Butterworth S., Francis S., Kelly E., McGlone F., Bowtell R., Sawle G.V. Abnormal Cortical Sensory Activation in Dystonia: An FMRI Study. Mov. Disord. Off. J. Mov. Disord. Soc. 2003;18:673–682. doi: 10.1002/mds.10416. PubMed DOI
Tempel L.W., Perlmutter J.S. Abnormal Vibration-Induced Cerebral Blood Flow Responses in Idiopathic Dystonia. Brain. 1990;113:691–707. doi: 10.1093/brain/113.3.691. PubMed DOI
Ceballos-Baumann A.O., Passingham R.E., Marsden C.D., Brooks D.J. Motor Reorganization in Acquired Hemidystonia. Ann. Neurol. 1995;37:746–757. doi: 10.1002/ana.410370608. PubMed DOI
Ceballos-Baumann A.O., Passingham R.E., Warner T., Playford E.D., Marsden C.D., Brooks D.J. Overactive Prefrontal and Underactive Motor Cortical Areas in Idiopathic Dystonia. Ann. Neurol. 1995;37:363–372. doi: 10.1002/ana.410370313. PubMed DOI
Dresel C., Li Y., Wilzeck V., Castrop F., Zimmer C., Haslinger B. Multiple Changes of Functional Connectivity between Sensorimotor Areas in Focal Hand Dystonia. J. Neurol. Neurosurg. Psychiatry. 2014;85:1245–1252. doi: 10.1136/jnnp-2013-307127. PubMed DOI
Haslinger B., Noé J., Altenmüller E., Riedl V., Zimmer C., Mantel T., Dresel C. Changes in Resting-State Connectivity in Musicians with Embouchure Dystonia. Mov. Disord. 2017;32:450–458. doi: 10.1002/mds.26893. PubMed DOI
Norris S.A., Morris A.E., Campbell M.C., Karimi M., Adeyemo B., Paniello R.C., Snyder A.Z., Petersen S.E., Mink J.W., Perlmutter J.S. Regional, Not Global, Functional Connectivity Contributes to Isolated Focal Dystonia. Neurology. 2020;95:e2246–e2258. doi: 10.1212/WNL.0000000000010791. PubMed DOI PMC
Shimizu M., Suzuki Y., Kiyosawa M., Wakakura M., Ishii K., Ishiwata K., Mochizuki M. Glucose Hypermetabolism in the Thalamus of Patients with Hemifacial Spasm. Mov. Disord. 2012;27:519–525. doi: 10.1002/mds.24925. PubMed DOI
Corp D.T., Joutsa J., Darby R.R., Delnooz C.C.S., van de Warrenburg B.P.C., Cooke D., Prudente C.N., Ren J., Reich M.M., Batla A., et al. Network Localization of Cervical Dystonia Based on Causal Brain Lesions. Brain. 2019;142:1660–1674. doi: 10.1093/brain/awz112. PubMed DOI PMC
Filip P., Lungu O.V., Bareš M. Dystonia and the Cerebellum: A New Field of Interest in Movement Disorders? Clin. Neurophysiol. 2013;124:1269–1276. doi: 10.1016/j.clinph.2013.01.003. PubMed DOI
Shakkottai V.G., Batla A., Bhatia K., Dauer W.T., Dresel C., Niethammer M., Eidelberg D., Raike R.S., Smith Y., Jinnah H.A., et al. Current Opinions and Areas of Consensus on the Role of the Cerebellum in Dystonia. Cerebellum. 2017;16:577–594. doi: 10.1007/s12311-016-0825-6. PubMed DOI PMC
Filip P., Gallea C., Lehéricy S., Bertasi E., Popa T., Mareček R., Lungu O.V., Kašpárek T., Vaníček J., Bareš M. Disruption in Cerebellar and Basal Ganglia Networks during a Visuospatial Task in Cervical Dystonia. Mov. Disord. 2017 doi: 10.1002/mds.26930. PubMed DOI
Gracien R.-M., Petrov F., Hok P., van Wijnen A., Maiworm M., Seiler A., Deichmann R., Baudrexel S. Multimodal Quantitative MRI Reveals No Evidence for Tissue Pathology in Idiopathic Cervical Dystonia. Front. Neurol. 2019;10:914. doi: 10.3389/fneur.2019.00914. PubMed DOI PMC
Lehéricy S., Tijssen M.A.J., Vidailhet M., Kaji R., Meunier S. The Anatomical Basis of Dystonia: Current View Using Neuroimaging. Mov. Disord. 2013;28:944–957. doi: 10.1002/mds.25527. PubMed DOI
Dorňák T., Justanová M., Konvalinková R., Říha M., Mužík J., Hoskovcová M., Srp M., Navrátilová D., Otruba P., Gál O., et al. Prevalence and Evolution of Spasticity in Patients Suffering from First-Ever Stroke with Carotid Origin: A Prospective, Longitudinal Study. Eur. J. Neurol. 2019;26:880–886. doi: 10.1111/ene.13902. PubMed DOI
Thibaut A., Chatelle C., Ziegler E., Bruno M.-A., Laureys S., Gosseries O. Spasticity after Stroke: Physiology, Assessment and Treatment. Brain Inj. 2013;27:1093–1105. doi: 10.3109/02699052.2013.804202. PubMed DOI
Bergfeldt U., Jonsson T., Bergfeldt L., Julin P. Cortical Activation Changes and Improved Motor Function in Stroke Patients after Focal Spasticity Therapy--an Interventional Study Applying Repeated FMRI. BMC Neurol. 2015;15:52. doi: 10.1186/s12883-015-0306-4. PubMed DOI PMC
Šenkárová Z., Hluštík P., Otruba P., Herzig R., Kaňovský P. Modulation of Cortical Activity in Patients Suffering from Upper Arm Spasticity Following Stroke and Treated with Botulinum Toxin A: An FMRI Study. J. Neuroimaging. 2010;20:9–15. doi: 10.1111/j.1552-6569.2009.00375.x. PubMed DOI
Tomášová Z., Hluštík P., Král M., Otruba P., Herzig R., Krobot A., Kaňovský P. Cortical Activation Changes in Patients Suffering from Post-Stroke Arm Spasticity and Treated with Botulinum Toxin A. J. Neuroimaging. 2013;23:337–344. doi: 10.1111/j.1552-6569.2011.00682.x. PubMed DOI
Veverka T., Hluštík P., Tomášová Z., Hok P., Otruba P., Král M., Tüdös Z., Zapletalová J., Herzig R., Krobot A., et al. BoNT-A Related Changes of Cortical Activity in Patients Suffering from Severe Hand Paralysis with Arm Spasticity Following Ischemic Stroke. J. Neurol. Sci. 2012;319:89–95. doi: 10.1016/j.jns.2012.05.008. PubMed DOI
Veverka T., Hluštík P., Hok P., Otruba P., Tüdös Z., Zapletalová J., Krobot A., Kaňovský P. Cortical Activity Modulation by Botulinum Toxin Type A in Patients with Post-Stroke Arm Spasticity: Real and Imagined Hand Movement. J. Neurol. Sci. 2014;346:276–283. doi: 10.1016/j.jns.2014.09.009. PubMed DOI
Veverka T., Hluštík P., Hok P., Otruba P., Zapletalová J., Tüdös Z., Krobot A., Kaňovský P. Sensorimotor Modulation by Botulinum Toxin A in Post-Stroke Arm Spasticity: Passive Hand Movement. J. Neurol. Sci. 2016;362:14–20. doi: 10.1016/j.jns.2015.12.049. PubMed DOI
Veverka T., Hok P., Otruba P., Zapletalová J., Kukolová B., Tüdös Z., Krobot A., Kaňovský P., Hluštík P. Botulinum Toxin Modulates Posterior Parietal Cortex Activation in Post-Stroke Spasticity of the Upper Limb. Front. Neurol. 2019;10:495. doi: 10.3389/fneur.2019.00495. PubMed DOI PMC
Chang C.-L., Weber D.J., Munin M.C. Changes in Cerebellar Activation after Onabotulinumtoxin A Injections for Spasticity After Chronic Stroke: A Pilot Functional Magnetic Resonance Imaging Study. Arch. Phys. Med. Rehabil. 2015;96:2007–2016. doi: 10.1016/j.apmr.2015.07.007. PubMed DOI PMC
Manganotti P., Acler M., Formaggio E., Avesani M., Milanese F., Baraldo A., Storti S.F., Gasparini A., Cerini R., Mucelli R.P., et al. Changes in Cerebral Activity after Decreased Upper-Limb Hypertonus: An EMG-FMRI Study. Magn. Reson. Imaging. 2010;28:646–652. doi: 10.1016/j.mri.2009.12.023. PubMed DOI
Hok P., Hluštík P., Tüdös Z., Frantis P., Klosová J., Sládková V., Mareš J., Otruba P., Kaňovský P. Changes in Motor Cortex Activation after Botulinum Toxin Treatment in MS Patients with Leg Spasticity. Aktual. Neurol. 2011;11:251–256.
Veverka T., Hluštík P., Hok P., Tomášová Z., Otruba P., Král M., Tüdös Z., Krobot A., Herzig R., Kaňovský P. Differences in the Modulation of Cortical Activity in Patients Suffering from Upper Arm Spasticity Following Stroke and Treated with Botulinum Toxin A. Čes. Slov. Neurol. Neurochir. 2013;76:175–182.
Roland P.E., Larsen B., Lassen N.A., Skinhøj E. Supplementary Motor Area and Other Cortical Areas in Organization of Voluntary Movements in Man. J. Neurophysiol. 1980;43:118–136. doi: 10.1152/jn.1980.43.1.118. PubMed DOI
Diserens K., Ruegg D., Kleiser R., Hyde S., Perret N., Vuadens P., Fornari E., Vingerhoets F., Seitz R.J. Effect of Repetitive Arm Cycling Following Botulinum Toxin Injection for Poststroke Spasticity: Evidence from FMRI. Neurorehabil. Neural Repair. 2010;24:753–762. doi: 10.1177/1545968310372138. PubMed DOI