Modulation of Motor Cortex Activity After Intrathecal Baclofen Delivery in Chronic Thoracic Spinal Cord Injury
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35645987
PubMed Central
PMC9136289
DOI
10.3389/fneur.2022.778697
Knihovny.cz E-zdroje
- Klíčová slova
- functional MRI, intrathecal baclofen, motor cortex activity, plasticity, spinal cord injury,
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Intrathecal baclofen (ITB) is commonly used for reduction of spasticity in chronic spinal cord injury (SCI). Its clinical effect is well-known; however, exact mechanisms of long-term effect of continuous ITB administration (cITBa) on modulation of cortical processes have not been elucidated. The aim of this study was to evaluate changes in motor cortex activation for healthy upper limbs in comparison to impaired lower limbs by functional magnetic resonance imaging (fMRI). METHODS: Ten subjects (eight males, 20-69 years) with thoracic SCI presenting no voluntary movements of lower limbs (except one) were enrolled in the fMRI study. fMRI at 1.5T with a finger tapping paradigm and mental movement simulating foot flexion on the dominant side were performed before, 3 months, and 1 year after start of cITBa. fMRI data processing was carried out using FMRI Expert Analysis Tool (FEAT), part of FSL. A second-level analysis was carried out using FLAME stages 1 and 2. The level of spasticity was assessed with the Modified Ashworth scale (MAS). RESULTS: Continuous ITB significantly decreased limb spasticity in all the subjects (group MAS spasticity dropped from 3 to 0.3). The second-level analysis (Z > 1.6, cluster significance threshold p =0.05) revealed increased activation of the primary sensorimotor cortex of the foot between baseline and 3 months, and 3 months and 1 year. CONCLUSION: Increased sensorimotor cortex activation with spasticity reduction after cITBa may reflect distant functional reorganization because of long-term mediated neuroplastic changes in the sensorimotor cortex. Better understanding of modulation of brain function in SCI after cITBa may influence the field of neurorehabilitation.
Zobrazit více v PubMed
Adams MM, Hicks AL. Spasticity after spinal cord injury. Spinal Cord. (2005) 43:577–86. 10.1038/sj.sc.3101757 PubMed DOI
Stetkarova I, Ehler E. Jech R: Spasticity and its Treatment. Maxdorf. (2012) p. 225–48.
Holtz KA, Lipson R, Noonan VK, Kwon BK, Mills PB. Prevalence and effect of problematic spasticity after traumatic spinal cord injury. Arch Phys Med Rehabil. (2017) 98:1132–8. 10.1016/j.apmr.2016.09.124 PubMed DOI
DiPiro ND Li C, Krause JS. A longitudinal study of self-reported spasticity among individuals with chronic spinal cord injury. Spinal Cord. (2018) 56:218–25. 10.1038/s41393-017-0031-5 PubMed DOI
Naro A, Leo A, Russo M, Casella C, Buda A, Crespantini A, et al. . Breakthroughs in the spasticity management: Are non-pharmacological treatments the future? J ClinNeurosci. (2017) 39:16–27. 10.1016/j.jocn.2017.02.044 PubMed DOI
Otero-Romero S, Sastre-Garriga J, Comi G, Hartung HP, SoelbergSørensen P, Thompson AJ, et al. . Pharmacological management of spasticity in multiple sclerosis: Systematic review and consensus paper. MultScler. (2016) 22:1386–96. 10.1177/1352458516643600 PubMed DOI
Taricco M, Pagliacci MC, Telaro E, Adone R. Pharmacological interventions for spasticity following spinal cord injury: results of a Cochrane systematic review. EuraMedicophys. (2006) 42:5–15. PubMed
Lui J, Sarai M, Mills PB. Chemodenervation for treatment of limb spasticity following spinal cord injury: a systematic review. Spinal Cord. (2015) 53:252–64. 10.1038/sc.2014.241 PubMed DOI
McIntyre A, Mays R, Mehta S, Janzen S, Townson A, Hsieh J, et al. . Examining the effectiveness of intrathecal baclofen on spasticity in individuals with chronic spinal cord injury: a systematic review. J Spinal Cord Med. (2014) 37:11–8. 10.1179/2045772313Y.0000000102 PubMed DOI PMC
Stempien L, Tsai T. Intrathecal baclofen pump use for spasticity: a clinical survey. Am J Phys Med Rehabil. (2000) 79:536–41. 10.1097/00002060-200011000-00010 PubMed DOI
Boviatsis EJ, Kouyialis AT, Korfias S, Sakas DE. Functional outcome of intrathecal baclofen administration for severe spasticity. ClinNeurolNeurosurg. (2005) 107:289–95. 10.1016/j.clineuro.2004.09.007 PubMed DOI
Zahavi A, Geertzen JHB, Staal M, Rietman JS. Long term effect (more than five years) of intrathecal baclofen on impairment, disability and quality of life in patients with severe spasicity of spinal origin. J NeurolNeurosurg Psychiatry. (2004) 75:1553–7. 10.1136/jnnp.2003.014282 PubMed DOI PMC
Dario A, Tomei G. A benefit-risk assessment of baclofen in severe spinal spasticity. Drug Saf . (2004) 27:799–818 10.2165/00002018-200427110-00004 PubMed DOI
Draulans N, Vermeersch K, Degraeuwe B, Meurrens T, Peers K, Nuttin B, et al. . Intrathecal baclofen in multiple sclerosis and spinal cord injury: complications and long-term dosage evolution. ClinRehabil. (2013) 27:1137–43. 10.1177/0269215513488607 PubMed DOI
Stetkarova I, Yablon SA, Kofler M, Stokic DS. Procedure- and device-related complications of intrathecal baclofen administration for management of adult muscle hypertonia: a review. Neurorehabil Neural Repair. (2010) 24:609–19. 10.1177/1545968310363585 PubMed DOI
Stetkarova I, Brabec K, Vaško P, Mencl L. Intrathecal baclofen in spinal spasticity: frequency and severity of withdrawal syndrome. Pain Physician. (2015) 18:E633–41. 10.36076/ppj.2015/18/E PubMed DOI
Saulino M. Ivanhoe, McGuire JR, Ridley B, Shilt JS, Boster AL. Best practices for intrathecal baclofen therapy: patient selection. Neuromodulation. (2016) 19:607–15. 10.1111/ner.12447 PubMed DOI
Stetkarova I, Krámská L, Keller J. Improvement of memory functions in chronic spinal cordinjury after long-term intrathecal baclofen delivery for spasticity relief. Neuromodulation. (2021) 24:1199–203. 10.1111/ner.13340 PubMed DOI
Kumru H, Stetkarova I, Schindler C, Vidal J, Kofler M. Neurophysiological evidence for muscle tone reduction by intrathecal baclofen at the brainstem level. ClinNeurophysiol. (2011) 122:1229–37. 10.1016/j.clinph.2010.09.010 PubMed DOI
Stetkarova I, Kofler M. Differential effect of baclofen on cortical and spinal inhibitory circuits. Clin Neurophysiol. (2013) 124:339–45 10.1016/j.clinph.2012.07.005 PubMed DOI
Nasrallah FA, Griffin JL, Balcar VJ, Rae C. Understanding your inhibitions: modulation of brain cortical metabolism by GABA(B) receptors. J Cereb Blood Flow Metab. (2007) 27:1510–20. 10.1038/sj.jcbfm.9600453 PubMed DOI
Guerrera S, Morabito R, Baglieri A, Corallo F, Ciurleo R, De Luca R, et al. . Cortical reorganization in multiple sclerosis after intrathecal baclofen therapy. Neurocase. (2014) 20:225–9. 10.1080/13554794.2013.770872 PubMed DOI
Marino RJ, Barros T, Biering-Sorensen F, Burns SP, Donovan WH, Graves DE, et al. . International standards for neurological classification of spinal cord injury. J Spinal Cord Med. (2003) 26:S50–S56. 10.1080/10790268.2003.11754575 PubMed DOI
Bohannon RW, Smith MB. Inter-rater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. (1987) 67:206–7. 10.1093/ptj/67.2.206 PubMed DOI
Meseguer-Henarejos AB, Sánchez-Meca J, López-Pina JA, Carles-Hernández R. Inter- and intra-rater reliability of the Modified Ashworth Scale: a systematic review and meta-analysis. Eur J Phys Rehabil Med. (2018) 54:576–90. 10.23736/S1973-9087.17.04796-7 PubMed DOI
Worsley KJ. Statistical analysis of activation images. In: Jezzard P, Matthews PM, Smith SM (Eds). Functional MRI: An Introduction to Methods OUP. (2001). 10.1093/acprof:oso/9780192630711.003.0014 DOI
Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC. Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp. (1994) 1:210–20. 10.1002/hbm.460010306 PubMed DOI
Mohammed H, Hollis ER, 2nd. Cortical reorganization of sensorimotor systems and the role of intracortical circuits after spinal cord injury. Neurotherapeutics. (2018). 10.1007/s13311-018-0638-z PubMed DOI PMC
Kaushal M, Oni-Orisan A, Chen G, Li W, Leschke J, Ward BD, et al. . Evaluation of whole-brain resting-state functional connectivity in spinal cord injury: a large-scale network analysis using network-based statistic. J Neurotrauma. (2017) 34:1278–82 10.1089/neu.2016.4649 PubMed DOI
Matsubayashi K, Nagoshi N, Komaki Y, Kojima K, Shinozaki M, Tsuji O, et al. . Assessing cortical plasticity after spinal cord injury by using resting-state functional magnetic resonance imaging in awake adult mice. Sci Rep. (2018) 8:14406. 10.1038/s41598-018-32766-8 PubMed DOI PMC
Solstrand Dahlberg L, Becerra L, Borsook D, Linnman C. Brain changes after spinal cord injury, a quantitative meta-analysis and review. NeurosciBiobehav Rev. (2018) 90:272–93. 10.1016/j.neubiorev.2018.04.018 PubMed DOI
Jurkiewicz MT, Mikulis DJ, Fehlings MG, Verrier MC. Sensorimotor cortical activation in patients with cervical spinal cord injury with persisting paralysis. Neurorehabil Neural Repair. (2010) 24:136–40. 10.1177/1545968309347680 PubMed DOI
Wang W, Xie W, Zhang Q, Liu L, Liu J, Zhou S, et al. . Reorganization of the brain in spinal cord injury: a meta-analysis of functional MRI studies. Neuroradiology. (2019) 61:1309–18. 10.1007/s00234-019-02272-3 PubMed DOI
Nakanishi T, Nakagawa K, Kobayashi H, Kudo K, Nakazawa K. Specific brain reorganization underlying superior upper limb motor function after spinal cord injury: a multimodal MRI study. Neurorehabil Neural Repair. (2021) 29:1545968321989347. 10.1177/1545968321989347 PubMed DOI
Min YS, Park JW, Jin SU, Jang KE, Nam HU, Lee YS, et al. . Alteration of resting-state brain sensorimotor connectivity following spinal cord injury: a resting-state functional magnetic resonance imaging study. J Neurotrauma. (2015) 32:1422–7. 10.1089/neu.2014.3661 PubMed DOI
Serradj N, Agger SF, Hollis ER, 2nd. Corticospinal circuit plasticity in motor rehabilitation from spinal cord injury. Neurosci Lett. (2017) 652:94–104. 10.1016/j.neulet.2016.12.003 PubMed DOI
Hok P, Veverka T, Hluštík P, Nevrlý M, Kanovský P. The central effects of botulinum toxin in dystonia and spasticity. Toxins (Basel). (2021) 13:155. 10.3390/toxins13020155 PubMed DOI PMC
Veverka T, Hok P, Otruba P, Zapletalova O, Kukolova B, Tudos Z, et al. . Botulinum toxin modulatesposteriorparietalcortexactivation in post-stroke spasticity oftheupper limb. Front Neurol. (2019) 10:495. 10.3389/fneur.2019.00495 PubMed DOI PMC
Li X, Chen Q, Zheng W, Chen X, Wang L, Qin W, Li K, Lu J, Chen N. Inconsistency between cortical reorganization and functional connectivity alteration in the sensorimotor cortex following incomplete cervical spinal cord injury. Brain Imaging Behav. (2019). 10.1007/s11682-019-00190-9 PubMed DOI
Chen Q, Zheng W, Chen X, Li X, Wang L, Qin W, et al. . Reorganization of the somatosensory pathway after subacute incomplete cervical cord injury. Neuroimage Clin. (2019) 21:101674. 10.1016/j.nicl.2019.101674 PubMed DOI PMC
Naftchi NE, Schlosser W, Horst WD. Correlation of changes in the GABA-ergic system with the development of spasticity in paraplegic cats. Adv Exp Med Biol. (1979) 123:431–50. 10.1007/978-1-4899-5199-1_27 PubMed DOI
Kakinohana O, Hefferan MP, Nakamura S, Kakinohana M, Galik J, Tomori Z, et al. . Development of GABA-sensitive spasticity and rigidity in rats after transient spinal cord ischemia: a qualitative and quantitative electrophysiological and histopathological study. Neuroscience. (2006) 141(3):1569-83. 10.1016/j.neuroscience.2006.04.083 PubMed DOI