Botulinum Toxin Modulates Posterior Parietal Cortex Activation in Post-stroke Spasticity of the Upper Limb
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31143157
PubMed Central
PMC6521800
DOI
10.3389/fneur.2019.00495
Knihovny.cz E-zdroje
- Klíčová slova
- botulinum toxin, functional magnetic resonance imaging, motor imagery, neuronal plasticity, spasticity, stroke,
- Publikační typ
- časopisecké články MeSH
Post-stroke spasticity (PSS) is effectively treated with intramuscular botulinum toxin type A (BoNT-A), although the clinical improvement is likely mediated by changes at the central nervous system level. Using functional magnetic resonance imaging (fMRI) of the brain, this study aims to confirm and locate BoNT-A-related changes during motor imagery with the impaired hand in severe PSS. Temporary alterations in primary and secondary sensorimotor representation of the impaired upper limb were expected. Thirty chronic stroke patients with upper limb PSS undergoing comprehensive treatment including physiotherapy and indicated for BoNT treatment were investigated. A change in PSS of the upper limb was assessed with the modified Ashworth scale (MAS). fMRI and clinical assessments were performed before (W0) and 4 weeks (W4) and 11 weeks (W11) after BoNT-A application. fMRI data were acquired using 1.5-Tesla scanners during imagery of finger-thumb opposition sequences with the impaired hand. At the group level, we separately modeled (1) average activation at each time point with the MAS score and age at W0 as covariates; and (2) within-subject effect of BoNT-A and the effect of time since W0 as independent variables. Comprehensive treatment of PSS with BoNT-A significantly decreased PSS of the upper limb with a maximal effect at W4. Task-related fMRI prior to treatment (W0) showed extensive activation of bilateral frontoparietal sensorimotor cortical areas, bilateral cerebellum, and contralesional basal ganglia and thalamus. After BoNT-A application (W4), the activation extent decreased globally, mostly in the bilateral parietal cortices and cerebellum, but returned close to baseline at W11. The intra-subject contrast revealed a significant BoNT-A effect, manifesting as a transient decrease in the activation of the ipsilesional intraparietal sulcus and superior parietal lobule. We demonstrate that BoNT-A treatment of PSS of the upper limb is associated with transient changes in the ipsilesional posterior parietal cortex, possibly resulting from temporarily altered sensorimotor upper limb representations.
Department of Neurology Palacký University and University Hospital Olomouc Czechia
Department of Physiotherapy Palacký University and University Hospital Olomouc Czechia
Department of Radiology Palacký University and University Hospital Olomouc Czechia
Zobrazit více v PubMed
Zorowitz RD, Gillard PJ, Brainin M. Poststroke spasticity: sequelae and burden on stroke survivors and caregivers. Neurology. (2013) 80:S45–52. 10.1212/WNL.0b013e3182764c86 PubMed DOI
Sommerfeld DK, Eek EU-B, Svensson A-K, Holmqvist LW, von Arbin MH. Spasticity after stroke: its occurrence and association with motor impairments and activity limitations. Stroke. (2004) 35:134–9. 10.1161/01.STR.0000105386.05173.5E PubMed DOI
Urban PP, Wolf T, Uebele M, Marx JJ, Vogt T, Stoeter P, et al. . Occurence and clinical predictors of spasticity after ischemic stroke. Stroke. (2010) 41:2016–20. 10.1161/STROKEAHA.110.581991 PubMed DOI
Wissel J, Ward AB, Erztgaard P, Bensmail D, Hecht MJ, Lejeune TM, et al. . European consensus table on the use of botulinum toxin type A in adult spasticity. J Rehabil Med. (2009) 41:13–25. 10.2340/16501977-0303 PubMed DOI
Sheean G, Lannin NA, Turner-Stokes L, Rawicki B, Snow BJ. Botulinum toxin assessment, intervention and after-care for upper limb hypertonicity in adults: international consensus statement. Eur J Neurol. (2010) 17 (Suppl. 2):74–93. 10.1111/j.1468-1331.2010.03129.x PubMed DOI
Sunnerhagen KS, Olver J, Francisco GE. Assessing and treating functional impairment in poststroke spasticity. Neurology. (2013) 80:S35–44. 10.1212/WNL.0b013e3182764aa2 PubMed DOI
Curra A, Berardelli A. Do the unintended actions of botulinum toxin at distant sites have clinical implications? Neurology. (2009) 72:1095–9. 10.1212/01.wnl.0000345010.98495.fc PubMed DOI
Rosales RL, Dressler D. On muscle spindles, dystonia and botulinum toxin. Eur J Neurol. (2010) 17 (Suppl. 1):71–80. 10.1111/j.1468-1331.2010.03056.x PubMed DOI
Trompetto C, Bove M, Avanzino L, Francavilla G, Berardelli A, Abbruzzese G. Intrafusal effects of botulinum toxin in post-stroke upper limb spasticity. Eur J Neurol. (2008) 15:367–70. 10.1111/j.1468-1331.2008.02076.x PubMed DOI
Kanovský P, Streitová H, Dufek J, Znojil V, Daniel P, Rektor I. Change in lateralization of the P22/N30 cortical component of median nerve somatosensory evoked potentials in patients with cervical dystonia after successful treatment with botulinum toxin A. Mov Disord. (1998) 13:108–17. 10.1002/mds.870130122 PubMed DOI
Gilio F, Currà A, Lorenzano C, Modugno N, Manfredi M, Berardelli A. Effects of botulinum toxin type A on intracortical inhibition in patients with dystonia. Ann Neurol. (2000) 48:20–6. 10.1002/1531-8249(200007)48:1<20::AID-ANA5>3.0.CO;2-U PubMed DOI
Hanganu A, Muthuraman M, Chirumamilla VC, Koirala N, Paktas B, Deuschl G, et al. Grey matter microstructural integrity alterations in blepharospasm are partially reversed by botulinum neurotoxin therapy (vol 11, e0168652, 2016). PLoS ONE. (2017) 12:e0172374 10.1371/journal.pone.0172374 PubMed DOI PMC
Šenkárová Z, Hlustík P, Otruba P, Herzig R, Kanovský P. Modulation of cortical activity in patients suffering from upper arm spasticity following stroke and treated with botulinum toxin A: an fMRI study. J Neuroimaging. (2010) 20:9–15. 10.1111/j.1552-6569.2009.00375.x PubMed DOI
Tomášová Z, Hluštík P, Král M, Otruba P, Herzig R, Krobot A, et al. . Cortical activation changes in patients suffering from post-stroke arm spasticity and treated with botulinum toxin a. J Neuroimaging. (2013) 23:337–44. 10.1111/j.1552-6569.2011.00682.x PubMed DOI
Veverka T, Hluštík P, Hok P, Otruba P, Tüdös Z, Zapletalová J, et al. . Cortical activity modulation by botulinum toxin type A in patients with post-stroke arm spasticity: real and imagined hand movement. J Neurol Sci. (2014) 346:276–83. 10.1016/j.jns.2014.09.009 PubMed DOI
Veverka T, Hluštík P, Hok P, Otruba P, Zapletalová J, Tüdös Z, et al. . Sensorimotor modulation by botulinum toxin A in post-stroke arm spasticity: passive hand movement. J Neurol Sci. (2016) 362:14–20. 10.1016/j.jns.2015.12.049 PubMed DOI
Szameitat AJ, Shen S, Conforto A, Sterr A. Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients. Neuroimage. (2012) 62:266–80. 10.1016/j.neuroimage.2012.05.009 PubMed DOI
Sharma N, Baron J-C, Rowe JB. Motor imagery after stroke: relating outcome to motor network connectivity. Ann Neurol. (2009) 66:604–16. 10.1002/ana.21810 PubMed DOI PMC
Sharma N, Pomeroy VM, Baron J-C. Motor imagery—A backdoor to the motor system after stroke? Stroke. (2006) 37:1941–52. 10.1161/01.STR.0000226902.43357.fc PubMed DOI
Veverka T, Hluštík P, Tomášová Z, Hok P, Otruba P, Král M, et al. . BoNT-A related changes of cortical activity in patients suffering from severe hand paralysis with arm spasticity following ischemic stroke. J Neurol Sci. (2012) 319:89–95. 10.1016/j.jns.2012.05.008 PubMed DOI
Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. (1987) 67:206–7. PubMed
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. (1975) 12:189–98. PubMed
Zung WW. A self-rating depression scale. Arch Gen Psychiatry. (1965) 12:63–70. PubMed
Paternostro-Sluga T, Grim-Stieger M, Posch M, Schuhfried O, Vacariu G, Mittermaier C, et al. . Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J Rehabil Med. (2008) 40:665–71. 10.2340/16501977-0235 PubMed DOI
Brott T, Adams HP, Jr, Olinger CP, Marler JR, Barsan WG, Biller J, et al. . Measurements of acute cerebral infarction: a clinical examination scale. Stroke. (1989) 20:864–70. PubMed
Mahoney FI, Barthel DW. Functional evaluation: the Barthel index. Md State Med J. (1965) 14:61–5. PubMed
Quinn TJ, Dawson J, Walters MR, Lees KR. Variability in modified Rankin scoring across a large cohort of international observers. Stroke. (2008) 39:2975–9. 10.1161/STROKEAHA.108.515262 PubMed DOI
Krobot A, Schusterová B, Tomsová J, Kristková V, Konečný P. Specific protocol of physiotherapy in stroke patients. Cesk Slov Neurol N. (2008) 71/104(Suppl):70.
Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, Matthews PM. Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. Brain. (2002) 125:2731–42. 10.1093/brain/awf282 PubMed DOI
Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain. (2003) 126:1430–48. 10.1093/brain/awg145 PubMed DOI PMC
Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. (2001) 5:143–56. 10.1016/s1361-8415(01)00036-6 PubMed DOI
Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage. (2015) 112:267–77. 10.1016/j.neuroimage.2015.02.064 PubMed DOI
Woolrich MW, Ripley BD, Brady M, Smith SM. Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage. (2001) 14:1370–86. 10.1006/nimg.2001.0931 PubMed DOI
Glover GH. Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage. (1999) 9:416–29. PubMed
Calhoun VD, Stevens MC, Pearlson GD, Kiehl KA. fMRI analysis with the general linear model: removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms. Neuroimage. (2004) 22:252–7. 10.1016/j.neuroimage.2003.12.029 PubMed DOI
Beckmann CF, Jenkinson M, Smith SM. General multilevel linear modeling for group analysis in FMRI. Neuroimage. (2003) 20:1052–63. 10.1016/S1053-8119(03)00435-X PubMed DOI
Woolrich MW, Behrens TEJ, Beckmann CF, Jenkinson M, Smith SM. Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage. (2004) 21:1732–47. 10.1016/j.neuroimage.2003.12.023 PubMed DOI
Worsley KJ. Statistical Analysis of Activation Images. Functional MRI: An Introduction to Methods. Oxford: Oxford University Press; (2001). p. 251–70.
Pascual-Leone A, Amedi A, Fregni F, Merabet LB. The plastic human brain cortex. Annu Rev Neurosci. (2005) 28:377–401. 10.1146/annurev.neuro.27.070203.144216 PubMed DOI
Grezes J, Decety J. Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp. (2001) 12:1–19. 10.1002/1097-0193(200101)12:1<1::AID-HBM10>3.0.CO;2-V PubMed DOI PMC
Solodkin A, Hluštík P, Chen EE, Small SL. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex. (2004) 14:1246–55. 10.1093/cercor/bhh086 PubMed DOI
Hetu S, Gregoire M, Saimpont A, Coll M-P, Eugene F, Michon P-E, et al. . The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev. (2013) 37:930–49. 10.1016/j.neubiorev.2013.03.017 PubMed DOI
Dressler D, Saberi FA, Barbosa ER. Botulinum toxin: mechanisms of action. Arq Neuropsiquiatr. (2005) 63:180–5. 10.1590/s0004-282x2005000100035 PubMed DOI
Gerardin E, Sirigu A, Lehericy S, Poline JB, Gaymard B, Marsault C, et al. . Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex. (2000) 10:1093–104. 10.1093/cercor/10.11.1093 PubMed DOI
Hanakawa T, Immisch I, Toma K, Dimyan MA, Van Gelderen P, Hallett M. Functional properties of brain areas associated with motor execution and imagery. J Neurophysiol. (2003) 89:989–1002. 10.1152/jn.00132.2002 PubMed DOI
Dechent P, Merboldt KD, Frahm J. Is the human primary motor cortex involved in motor imagery? (vol 19, pg 138, 2004). Cogn Brain Res. (2004) 20:533–3. 10.1016/j.cogbrainres.2004.05.001 PubMed DOI
Hanakawa T, Dimyan MA, Hallett M. Motor planning, imagery, and execution in the distributed motor network: a time-course study with functional MRI. Cereb Cortex. (2008) 18:2775–88. 10.1093/cercor/bhn036 PubMed DOI PMC
Sharma N, Simmons LH, Jones PS, Day DJ, Carpenter TA, Pomeroy VM, et al. . Motor imagery after subcortical stroke a functional magnetic resonance imaging study. Stroke. (2009) 40:1315–24. 10.1161/STROKEAHA.108.525766 PubMed DOI
Manganotti P, Acler M, Formaggio E, Avesani M, Milanese F, Baraldo A, et al. . Changes in cerebral activity after decreased upper-limb hypertonus: an EMG-fMRI study. Magn Reson Imaging. (2010) 28:646–52. 10.1016/j.mri.2009.12.023 PubMed DOI
Diserens K, Ruegg D, Kleiser R, Hyde S, Perret N, Vuadens P, et al. . Effect of repetitive arm cycling following botulinum toxin injection for poststroke spasticity: evidence from FMRI. Neurorehabil Neural Repair. (2010) 24:753–62. 10.1177/1545968310372138 PubMed DOI
Bergfeldt U, Jonsson T, Bergfeldt L, Julin P. Cortical activation changes and improved motor function in stroke patients after focal spasticity therapy—an interventional study applying repeated fMRI. BMC Neurol. (2015) 15:52. 10.1186/s12883-015-0306-4 PubMed DOI PMC
Pundik S, Falchook AD, McCabe J, Litinas K, Daly JJ. Functional brain correlates of upper limb spasticity and its mitigation following rehabilitation in chronic stroke survivors. Stroke Res Treat. (2014) 2014:306325. 10.1155/2014/306325 PubMed DOI PMC
Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ. Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain. (2003) 126:2476–96. 10.1093/brain/awg245 PubMed DOI PMC
Small SL, Hluštík P, Noll DC, Genovese C, Solodkin A. Cerebellar hemispheric activation ipsilateral to the paretic hand correlates with functional recovery after stroke. Brain. (2002) 125:1544–57. 10.1093/brain/awf148 PubMed DOI
Feydy A, Carlier R, Roby-Brami A, Bussel B, Cazalis F, Pierot L, et al. . Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation. Stroke. (2002) 33:1610–7. 10.1161/01.str.0000017100.68294.52 PubMed DOI
Calautti C, Baron J-C. Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke. (2003) 34:1553–66. 10.1161/01.STR.0000071761.36075.A6 PubMed DOI
Marshall RS, Perera GM, Lazar RM, Krakauer JW, Constantine RC, DeLaPaz RL. Evolution of cortical activation during recovery from corticospinal tract infarction. Stroke. (2000) 31:656–61. 10.1161/01.str.31.3.656 PubMed DOI
Traversa R, Cicinelli P, Oliveri M, Giuseppina Palmieri M, Filippi MM, Pasqualetti P, et al. . Neurophysiological follow-up of motor cortical output in stroke patients. Clin Neurophysiol. (2000) 111:1695–703. 10.1016/S1388-2457(00)00373-4 PubMed DOI
Konen CS, Mruczek REB, Montoya JL, Kastner S. Functional organization of human posterior parietal cortex: grasping- and reaching-related activations relative to topographically organized cortex. J Neurophysiol. (2013) 109:2897–908. 10.1152/jn.00657.2012 PubMed DOI PMC
Brissenden JA, Levin EJ, Osher DE, Halko MA, Somers DC. Functional evidence for a cerebellar node of the dorsal attention network. J Neurosci. (2016) 36:6083–96. 10.1523/JNEUROSCI.0344-16.2016 PubMed DOI PMC
Sereno MI, Huang R-S. Multisensory maps in parietal cortex. Curr Opin Neurobiol. (2014) 24:39–46. 10.1016/j.conb.2013.08.014 PubMed DOI PMC
Goodale M, Milner A. Separate visual pathways for perception and action. Trends Neurosci. (1992) 15:20–5. 10.1016/0166-2236(92)90344-8 PubMed DOI
Culham JC, Valyear KF. Human parietal cortex in action. Curr Opin Neurobiol. (2006) 16:205–12. 10.1016/j.conb.2006.03.005 PubMed DOI
de Lange FP, Helmich RC, Toni I. Posture influences motor imagery: an fMRI study. Neuroimage. (2006) 33:609–17. 10.1016/j.neuroimage.2006.07.017 PubMed DOI
Maillet A, Krainik A, Debu B, Tropres I, Lagrange C, Thobois S, et al. . Levodopa effects on hand and speech movements in patients with Parkinson's disease: a fMRI study. PLoS ONE. (2012) 7:e46541. 10.1371/journal.pone.0046541 PubMed DOI PMC
Haslinger B, Erhard P, Kämpfe N, Boecker H, Rummeny E, Schwaiger M, et al. . Event-related functional magnetic resonance imaging in Parkinson's disease before and after levodopa. Brain. (2001) 124:558–70. 10.1093/brain/124.3.558 PubMed DOI
Kilteni K, Andersson BJ, Houborg C, Ehrsson HH. Motor imagery involves predicting the sensory consequences of the imagined movement. Nat Commun. (2018) 9:1617. 10.1038/s41467-018-03989-0 PubMed DOI PMC
Tian X, Poeppel D. Mental imagery of speech and movement implicates the dynamics of internal forward models. Front Psychol. (2010) 1:166. 10.3389/fpsyg.2010.00166 PubMed DOI PMC
Milton J, Solodkin A, Hlustík P, Small SL. The mind of expert motor performance is cool and focused. Neuroimage. (2007) 35:804–13. 10.1016/j.neuroimage.2007.01.003 PubMed DOI
Hall C, Pongrac J, Buckholz E. The measurement of imagery ability. Hum Mov Sci. (1985) 4:107–18. 10.1016/0167-9457(85)90006-5 DOI
Naito E. Controllability of motor imagery and transformation of visual-imagery. Percept Mot Skills. (1994) 78:479–87. 10.2466/pms.1994.78.2.479 PubMed DOI
Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J. Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp. (2009) 30:2157–72. 10.1002/hbm.20658 PubMed DOI PMC