Botulinum toxin injection changes resting state cerebellar connectivity in cervical dystonia
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33859210
PubMed Central
PMC8050264
DOI
10.1038/s41598-021-87088-z
PII: 10.1038/s41598-021-87088-z
Knihovny.cz E-zdroje
- MeSH
- botulotoxiny typ A aplikace a dávkování MeSH
- dospělí MeSH
- injekce do léze MeSH
- kognice fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozeček patofyziologie MeSH
- mozková kůra patofyziologie MeSH
- odpočinek fyziologie MeSH
- stupeň závažnosti nemoci MeSH
- tortikolis diagnostické zobrazování farmakoterapie patofyziologie psychologie MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- botulotoxiny typ A MeSH
In cervical dystonia, functional MRI (fMRI) evidence indicates changes in several resting state networks, which revert in part following the botulinum neurotoxin A (BoNT) therapy. Recently, the involvement of the cerebellum in dystonia has gained attention. The aim of our study was to compare connectivity between cerebellar subdivisions and the rest of the brain before and after BoNT treatment. Seventeen patients with cervical dystonia indicated for treatment with BoNT were enrolled (14 female, aged 50.2 ± 8.5 years, range 38-63 years). Clinical and fMRI examinations were carried out before and 4 weeks after BoNT injection. Clinical severity was evaluated using TWSTRS. Functional MRI data were acquired on a 1.5 T scanner during 8 min rest. Seed-based functional connectivity analysis was performed using data extracted from atlas-defined cerebellar areas in both datasets. Clinical scores demonstrated satisfactory BoNT effect. After treatment, connectivity decreased between the vermis lobule VIIIa and the left dorsal mesial frontal cortex. Positive correlations between the connectivity differences and the clinical improvement were detected for the right lobule VI, right crus II, vermis VIIIb and the right lobule IX. Our data provide evidence for modulation of cerebello-cortical connectivity resulting from successful treatment by botulinum neurotoxin.
Department of Neurology University Hospital Olomouc 1 P Pavlova 6 77900 Olomouc Czech Republic
Department of Radiology University Hospital Olomouc Olomouc Czech Republic
Zobrazit více v PubMed
Abbruzzese G, Berardelli A. Neurophysiological effects of botulinum toxin type A. Neurotox Res. 2006;9:109–114. doi: 10.1007/bf03033927. PubMed DOI
Avanzino L, Abbruzzese G. How does the cerebellum contribute to the pathophysiology of dystonia? Basal Ganglia Knowl. Gaps Parkinson’s Dis. Other Movement Disorders. 2012;2:231–235. doi: 10.1016/j.baga.2012.05.003. DOI
Balint B, Mencacci NE, Valente EM, Pisani A, Rothwell J, Jankovic J, Vidailhet M, Bhatia KP. Dystonia. Nat. Rev. Dis. Primers. 2018;4:25. doi: 10.1038/s41572-018-0023-6. PubMed DOI
Battistella G, Termsarasab P, Ramdhani RA, Fuertinger S, Simonyan K. Isolated focal dystonia as a disorder of large-scale functional networks Cereb. Cortex. 2017;27:1203–1215. doi: 10.1093/cercor/bhv313. PubMed DOI PMC
Berardelli A, Conte A. Dystonias. Handb. Exp. Pharmacol. 2019 doi: 10.1007/164_2019_339. PubMed DOI
Brodoehl S, Wagner F, Prell T, Klingner C, Witte OW, Günther A. Cause or effect: Altered brain and network activity in cervical dystonia is partially normalized by botulinum toxin treatment. NeuroImage Clin. 2019;22:101792. doi: 10.1016/j.nicl.2019.101792. PubMed DOI PMC
Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 2011;106:2322–2345. doi: 10.1152/jn.00339.2011. PubMed DOI PMC
Consky E, Lang A. Clinical Assessments of patients with Cervical Dystonia. In: Jankovic J, editor. Therapy with Botulinum Toxin. Taylor & Francis; 1994.
Corp DT, Joutsa J, Darby RR, Delnooz CCS, van de Warrenburg BPC, Cooke D, Prudente CN, Ren J, Reich MM, Batla A, Bhatia KP, Jinnah HA, Liu H, Fox MD. Network localization of cervical dystonia based on causal brain lesions. Brain. 2019;142:1660–1674. doi: 10.1093/brain/awz112. PubMed DOI PMC
de Vries PM, Johnson KA, de Jong BM, Gieteling EW, Bohning DE, George MS, Leenders KL. Changed patterns of cerebral activation related to clinically normal hand movement in cervical dystonia. Clin. Neurol. Neurosurg. 2008;110:120–128. doi: 10.1016/j.clineuro.2007.09.020. PubMed DOI
Delnooz CCS, Pasman JW, Beckmann CF, van de Warrenburg BPC. Altered striatal and pallidal connectivity in cervical dystonia. Brain Struct. Funct. 2015;220:513–523. doi: 10.1007/s00429-013-0671-y. PubMed DOI
Delnooz CCS, Pasman JW, Beckmann CF, van de Warrenburg BPC. Task-free functional MRI in cervical dystonia reveals multi-network changes that partially normalize with botulinum toxin. PLoS ONE. 2013;8:e62877. doi: 10.1371/journal.pone.0062877. PubMed DOI PMC
Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–980. doi: 10.1016/j.neuroimage.2006.01.021. PubMed DOI
Deuschl G, Heinen F, Kleedorfer B, Wagner M, Lücking CH, Poewe W. Clinical and polymyographic investigation of spasmodic torticollis. J. Neurol. 1992;239:9–15. doi: 10.1007/bf00839204. PubMed DOI
Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. Neuroimage. 2009;46:39–46. doi: 10.1016/j.neuroimage.2009.01.045. PubMed DOI
Diedrichsen J, King M, Hernandez-Castillo C, Sereno M, Ivry RB. Universal transform or multiple functionality? Understanding the contribution of the human cerebellum across task domains. Neuron. 2019;102:918–928. doi: 10.1016/j.neuron.2019.04.021. PubMed DOI PMC
Eickhoff SB, Paus T, Caspers S, Grosbras M-H, Evans AC, Zilles K, Amunts K. Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage. 2007;36:511–521. doi: 10.1016/j.neuroimage.2007.03.060. PubMed DOI
Fečíková A, Jech R, Čejka V, Čapek V, Šťastná D, Štětkářová I, Mueller K, Schroeter ML, Růžička F, Urgošík D. Benefits of pallidal stimulation in dystonia are linked to cerebellar volume and cortical inhibition. Sci. Rep. 2018;8:17218. doi: 10.1038/s41598-018-34880-z. PubMed DOI PMC
Feng L, Yin D, Wang X, Xu Y, Xiang Y, Teng F, Pan Y, Zhang X, Su J, Wang Z, Jin L. Brain connectivity abnormalities and treatment-induced restorations in patients with cervical dystonia. Eu. J. Neurol. 2020 doi: 10.1111/ene.14695. PubMed DOI
Filip P, Gallea C, Lehéricy S, Bertasi E, Popa T, Mareček R, Lungu OV, Kašpárek T, Vaníček J, Bareš M. Disruption in cerebellar and basal ganglia networks during a visuospatial task in cervical dystonia. Disord; 2017. PubMed
Filip P, Lungu OV, Bareš M. Dystonia and the cerebellum: a new field of interest in movement disorders? Clin. Neurophysiol. 2013;124:1269–1276. doi: 10.1016/j.clinph.2013.01.003. PubMed DOI
Gelb DJ, Yoshimura DM, Olney RK, Lowenstein DH, Aminoff MJ. Change in pattern of muscle activity following botulinum toxin injections for torticollis. Ann. Neurol. 1991;29:370–376. doi: 10.1002/ana.410290407. PubMed DOI
Gilio F, Currà A, Lorenzano C, Modugno N, Manfredi M, Berardelli A. Effects of botulinum toxin type A on intracortical inhibition in patients with dystonia. Ann. Neurol. 2000;48:20–26. doi: 10.1002/1531-8249(200007)48:1<20::AID-ANA5>3.0.CO;2-U. PubMed DOI
Grabner G, Janke AL, Budge MM, Smith D, Pruessner J, Collins DL. Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Med. Image Comput. Comput. Assist. Interv. 2006;9:58–66. PubMed
Gracien R-M, Petrov F, Hok P, van Wijnen A, Maiworm M, Seiler A, Deichmann R, Baudrexel S. Multimodal quantitative MRI reveals no evidence for tissue pathology in idiopathic cervical dystonia. Front. Neurol. 2019;10:914. doi: 10.3389/fneur.2019.00914. PubMed DOI PMC
Hanekamp S, Simonyan K. The large-scale structural connectome of task-specific focal dystonia. Hum. Brain Mapp. 2020;41:3253–3265. doi: 10.1002/hbm.25012. PubMed DOI PMC
Hok P, Opavský J, Labounek R, Kutín M, Šlachtová M, Tüdös Z, Kaňovský P, Hluštík P. Differential effects of sustained manual pressure stimulation according to site of action. Front. Neurosci. 2019;13:722. doi: 10.3389/fnins.2019.00722. PubMed DOI PMC
Jankovic J. Treatment of cervical dystonia with botulinum toxin. Mov. Disord. 2004;19(Suppl 8):S109–115. doi: 10.1002/mds.20024. PubMed DOI
Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;62:782–790. doi: 10.1016/j.neuroimage.2011.09.015. PubMed DOI
Jiang W, Lei Y, Wei J, Yang L, Wei S, Yin Q, Luo S, Guo W. Alterations of interhemispheric functional connectivity and degree centrality in cervical dystonia: a resting-state fMRI study. Neural Plast. 2019;2019:7349894. doi: 10.1155/2019/7349894. PubMed DOI PMC
Jost WH, Schramm A, Müngersdorf M, Stenner A, Schwingenschuh P, Maisonobe P, et al. Effectiveness of botulinum neurotoxin type A injections in naïve and previously-treated patients suffering from Torti- or Laterocollis or -caput: Results from a German-Austrian open-label prospective post-marketing surveillance study. J. Neurol. Sci. 2019;399:44–50. doi: 10.1016/j.jns.2019.02.017. PubMed DOI
Kaňovský P, Dufek J, Halačková H, Rektor I. Change in the pattern of cervical dystonia might be the cause of benefit loss during botulinum toxin treatment. Eur. J. Neurol. 1997;4:79–84. doi: 10.1111/j.1468-1331.1997.tb00303.x. PubMed DOI
Kaňovský P, Streitová H, Dufek J, Znojil V, Daniel P, Rektor I. Change in lateralization of the P22/N30 cortical component of median nerve somatosensory evoked potentials in patients with cervical dystonia after successful treatment with botulinum toxin A. Mov. Disord. 1998;13:108–117. doi: 10.1002/mds.870130122. PubMed DOI
Lehéricy S, Tijssen MAJ, Vidailhet M, Kaji R, Meunier S. The anatomical basis of dystonia: current view using neuroimaging. Mov. Disord. 2013;28:944–957. doi: 10.1002/mds.25527. PubMed DOI
Li Z, Prudente CN, Stilla R, Sathian K, Jinnah HA, Hu X. Alterations of resting-state fMRI measurements in individuals with cervical dystonia. Hum. Brain Mapp. 2017;38:4098–4108. doi: 10.1002/hbm.23651. PubMed DOI PMC
Marchand-Pauvert V, Aymard C, Giboin L-S, Dominici F, Rossi A, Mazzocchio R. Beyond muscular effects: depression of spinal recurrent inhibition after botulinum neurotoxin A. J. Physiol. (Lond.) 2013;591:1017–1029. doi: 10.1113/jphysiol.2012.239178. PubMed DOI PMC
Martino D, Di Giorgio A, D'Ambrosio E, Popolizio T, Macerollo A, Livrea P, Bertolino A, Defazio G. Cortical gray matter changes in primary blepharospasm: a voxel-based morphometry study. Mov. Disord. 2011;26:1907–1912. doi: 10.1002/mds.23724. PubMed DOI
Nevrlý M, Hluštík P, Hok P, Otruba P, Tüdös Z, Kaňovský P. Changes in sensorimotor network activation after botulinum toxin type A injections in patients with cervical dystonia: a functional MRI study. Exp. Brain Res. 2018;236:2627–2637. doi: 10.1007/s00221-018-5322-3. PubMed DOI PMC
Neychev VK, Gross RE, Lehéricy S, Hess EJ, Jinnah HA. The functional neuroanatomy of dystonia. Neurobiol. Dis. 2011;42:185–201. doi: 10.1016/j.nbd.2011.01.026. PubMed DOI PMC
Norris SA, Morris AE, Campbell MC, Karimi M, Adeyemo B, Paniello RC, Snyder AZ, Petersen SE, Mink JW, Perlmutter JS. Regional, not global, functional connectivity contributes to isolated focal dystonia. Neurology. 2020;95:2246–2258. doi: 10.1212/WNL.0000000000010791. PubMed DOI PMC
Opavský R, Hluštík P, Otruba P, Kaňovský P. Somatosensory cortical activation in cervical dystonia and its modulation with botulinum toxin: an fMRI study. Int. J. Neurosci. 2012;122:45–52. doi: 10.3109/00207454.2011.623807. PubMed DOI
Opavský R, Hluštík P, Otruba P, Kaňovský P. Sensorimotor network in cervical dystonia and the effect of botulinum toxin treatment: A functional MRI study. J. Neurol. Sci. Spec. Section ECF 2009 A New Treatment Era Muliple Sclerosis Options Challenges Risks Europ Charcot Foundation Symp. 2011;306:71–75. doi: 10.1016/j.jns.2011.03.040. PubMed DOI
Piccinin CC, Santos MCA, Piovesana LG, Campos LS, Guimarães RP, Campos BM, Torres FR, França MC, Amato-Filho AC, Lopes-Cendes I, Cendes F, D’Abreu A. Infratentorial gray matter atrophy and excess in primary craniocervical dystonia. Parkinsonism Relat. Disord. 2014;20:198–203. doi: 10.1016/j.parkreldis.2013.10.026. PubMed DOI
Prell T, Peschel T, Koehler B, Bokemeyer MH, Dengler R, Guenther A, Grosskreutz J. Structural brain abnormalities in cervical dystonia. BMC Neurosci. 2013;14:123. doi: 10.1186/1471-2202-14-123. PubMed DOI PMC
Prudente CN, Pardo CA, Xiao J, Hanfelt J, Hess EJ, LeDoux MS, Jinnah HA. Neuropathology of cervical dystonia. Exp. Neurol. 2013;241:95–104. doi: 10.1016/j.expneurol.2012.11.019. PubMed DOI PMC
Prudente CN, Hess EJ, Jinnah HA. Dystonia as a network disorder: what is the role of the cerebellum? Neuroscience. 2014;260:23–35. doi: 10.1016/j.neuroscience.2013.11.062. PubMed DOI PMC
Prudente CN, Stilla R, Singh S, Buetefisch C, Evatt M, Factor SA, Freeman A, Hu XP, Hess EJ, Sathian K, Jinnah HA. A functional magnetic resonance imaging study of head movements in cervical dystonia. Front. Neurol. 2016 doi: 10.3389/fneur.2016.00201. PubMed DOI PMC
Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Neuroimage. 2015;112:267–277. doi: 10.1016/j.neuroimage.2015.02.064. PubMed DOI
Ramdhani RA, Kumar V, Velickovic M, Frucht SJ, Tagliati M, Simonyan K. What’s special about task in dystonia? A voxel-based morphometry and diffusion weighted imaging study. Mov. Disord. 2014;29:1141–1150. doi: 10.1002/mds.25934. PubMed DOI PMC
Sadnicka A, Hoffland BS, Bhatia KP, van de Warrenburg BP, Edwards MJ. The cerebellum in dystonia - help or hindrance? Clin. Neurophysiol. 2012;123:65–70. doi: 10.1016/j.clinph.2011.04.027. PubMed DOI
Sarasso E, Agosta F, Piramide N, Bianchi F, Butera C, Gatti R, Amadio S, Del Carro U, Filippi M. Sensory trick phenomenon in cervical dystonia: a functional MRI study. J. Neurol. 2020 doi: 10.1007/s00415-019-09683-5. PubMed DOI
Shakkottai VG, Batla A, Bhatia K, Dauer WT, Dresel C, Niethammer M, Eidelberg D, Raike RS, Smith Y, Jinnah HA, Hess EJ, Meunier S, Hallett M, Fremont R, Khodakhah K, LeDoux MS, Popa T, Gallea C, Lehericy S, Bostan AC, Strick PL. Current opinions and areas of consensus on the role of the cerebellum in dystonia. Cerebellum. 2017;16:577–594. doi: 10.1007/s12311-016-0825-6. PubMed DOI PMC
Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 2008;100:3328–3342. doi: 10.1152/jn.90355.2008. PubMed DOI PMC
Woolrich MW, Behrens TEJ, Beckmann CF, Jenkinson M, Smith SM. Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage. 2004;21:1732–1747. doi: 10.1016/j.neuroimage.2003.12.023. PubMed DOI
Woolrich MW, Ripley BD, Brady M, Smith SM. Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage. 2001;14:1370–1386. doi: 10.1006/nimg.2001.0931. PubMed DOI