Molecular Dynamics Simulations of a Putative Novel Mechanism for UCP1-Assisted FA Anion Transport
Language English Country England, Great Britain Media print
Document type Journal Article
Grant support
Horizon 2020 Framework Programme
H2020 Marie Skłodowska-Curie Actions
PubMed
40497434
PubMed Central
PMC12153029
DOI
10.1111/apha.70068
Knihovny.cz E-resources
- Keywords
- anion transporter, cardiolipin, fatty acid cycling, mitochondrial SLC25 family, molecular dynamics simulations, proton transport mechanism,
- MeSH
- Ion Channels * metabolism chemistry genetics MeSH
- Ion Transport physiology MeSH
- Humans MeSH
- Fatty Acids * metabolism MeSH
- Mitochondrial Proteins * metabolism chemistry genetics MeSH
- Mutagenesis, Site-Directed MeSH
- Molecular Dynamics Simulation * MeSH
- Uncoupling Protein 1 MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ion Channels * MeSH
- Fatty Acids * MeSH
- Mitochondrial Proteins * MeSH
- Uncoupling Protein 1 MeSH
BACKGROUND: Mitochondrial energy can be stored as ATP or released as heat by uncoupling protein 1 (UCP1) during non-shivering thermogenesis in brown adipose tissue. UCP1, located in the inner mitochondrial membrane, reduces the proton gradient in the presence of long-chain fatty acids (FA). FA act as weak, protein-independent uncouplers, with the transport of the FA anion across the membrane being the rate-limiting step. According to the fatty acid cycling hypothesis, UCP1 catalyzes this step through an as-yet-undefined mechanism. METHODS: We used computational and experimental techniques, including all-atom molecular dynamics (MD) simulations, membrane conductance measurements, and site-directed mutagenesis. RESULTS: We identified two novel pathways for fatty acid anion translocation (sliding) at the UCP1 protein-lipid interface, ending at key arginine residues R84 and R183 in a nucleotide-binding region. This region forms a stable complex with fatty acid anion, which is crucial for anion transport. Mutations of these two arginines reduced membrane conductance, consistent with the MD simulation prediction that the arachidonic acid anion slides between helices H2-H3 and H4-H5, terminating at R84 and R183. Protonation of the arachidonic acid anion predicts its release from the protein-lipid interface, allowing it to move to either cytosolic or matrix leaflets of the membrane. CONCLUSION: We provide a novel, detailed mechanism by which UCP1 facilitates fatty acid anion transport, as part of the fatty acid cycling process originally proposed by Skulachev. The residues involved in this transport are conserved in other SLC25 proteins, suggesting the mechanism may extend beyond UCP1 to other members of the superfamily.
See more in PubMed
Mitchell P., “Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi‐Osmotic Type of Mechanism,” Nature 191 (1961): 144–148, 10.1038/191144a0. PubMed DOI
Brand M. D., “The Proton Leak Across the Mitochondrial Inner Membrane,” Biochimica et Biophysica Acta 1018 (1990): 128–133, 10.1016/0005-2728(90)90232-s. PubMed DOI
Ricquier D. and Bouillaud F., “Mitochondrial Uncoupling Proteins: From Mitochondria to the Regulation of Energy Balance,” Journal of Physiology 529, no. Pt 1 (2000): 3–10, 10.1111/j.1469-7793.2000.00003.x. PubMed DOI PMC
Andreyev A., Bondareva T. O., Dedukhova V. I., et al., “The ATP/ADP‐Antiporter Is Involved in the Uncoupling Effect of Fatty Acids on Mitochondria,” European Journal of Biochemistry 182 (1989): 585–592, 10.1111/j.1432-1033.1989.tb14867.x. PubMed DOI
Kreiter J., Rupprecht A., Škulj S., et al., “ANT1 Activation and Inhibition Patterns Support the Fatty Acid Cycling Mechanism for Proton Transport,” International Journal of Molecular Sciences 22 (2021): 2490, 10.3390/ijms22052490. PubMed DOI PMC
Pohl E. E., Rupprecht A., Macher G., and Hilse K. E., “Important Trends in UCP3 Investigation,” Frontiers in Physiology 10 (2019): 470, 10.3389/fphys.2019.00470. PubMed DOI PMC
Zuna K., Tyschuk T., Beikbaghban T., et al., “The 2‐Oxoglutarate/Malate Carrier Extends the Family of Mitochondrial Carriers Capable of Fatty Acid and 2,4‐Dinitrophenol‐Activated Proton Transport,” Acta Physiologica (Oxford, England) 240 (2024): e14143, 10.1111/apha.14143. PubMed DOI PMC
Ricquier D., “UCP1, the Mitochondrial Uncoupling Protein of Brown Adipocyte: A Personal Contribution and a Historical Perspective,” Biochimie 134 (2017): 3–8, 10.1016/j.biochi.2016.10.018. PubMed DOI
Nicholls D. G. and Rial E., “A History of the First Uncoupling Protein, UCP1,” Journal of Bioenergetics and Biomembranes 31 (1999): 399–406, 10.1023/a:1005436121005. PubMed DOI
Cannon B., Hedin A., and Nedergaard J., “Exclusive Occurrence of Thermogenin Antigen in Brown Adipose Tissue,” FEBS Letters 150 (1982): 129–132, 10.1016/0014-5793(82)81319-7. PubMed DOI
Nicholls D. G., “A History of UCP1,” Biochemical Society Transactions 29 (2001): 751–755, 10.1042/bst0290751. PubMed DOI
Shabalina I. G., Jacobsson A., Cannon B., and Nedergaard J., “Native UCP1 Displays Simple Competitive Kinetics Between the Regulators Purine Nucleotides and Fatty Acids,” Journal of Biological Chemistry 279 (2004): 38236–38248, 10.1074/jbc.M402375200. PubMed DOI
Fedorenko A., Lishko P. V., and Kirichok Y., “Mechanism of Fatty‐Acid‐Dependent UCP1 Uncoupling in Brown Fat Mitochondria,” Cell 151 (2012): 400–413, 10.1016/j.cell.2012.09.010. PubMed DOI PMC
Urbankova E., Voltchenko A., Pohl P., Jezek P., and Pohl E. E., “Transport Kinetics of Uncoupling Proteins. Analysis of UCP1 Reconstituted in Planar Lipid Bilayers,” Journal of Biological Chemistry 278 (2003): 32497–32500, 10.1074/jbc.M303721200. PubMed DOI
Macher G., Koehler M., Rupprecht A., Kreiter J., Hinterdorfer P., and Pohl E. E., “Inhibition of Mitochondrial UCP1 and UCP3 by Purine Nucleotides and Phosphate,” Biochimica et Biophysica Acta ‐ Biomembranes 1860 (2018): 664–672, 10.1016/j.bbamem.2017.12.001. PubMed DOI PMC
Klingenberg M., “UCP1 ‐ A Sophisticated Energy Valve,” Biochimie 134 (2017): 19–27, 10.1016/j.biochi.2016.10.012. PubMed DOI
Skulachev V. P., “Fatty Acid Circuit as a Physiological Mechanism of Uncoupling of Oxidative Phosphorylation,” FEBS Letters 294 (1991): 158–162, 10.1016/0014-5793(91)80658-p. PubMed DOI
Garlid K. D., Orosz D. E., Modriansky M., Vassanelli S., and Jezek P., “On the Mechanism of Fatty Acid‐Induced Proton Transport by Mitochondrial Uncoupling Protein,” Journal of Biological Chemistry 271 (1996): 2615–2620, 10.1074/jbc.271.5.2615. PubMed DOI
Winkler E. and Klingenberg M., “Effect of Fatty Acids on H PubMed
Klingenberg M., “Wanderings in Bioenergetics and Biomembranes,” Biochimica et Biophysica Acta 1797 (2010): 579–594, 10.1016/j.bbabio.2010.02.012. PubMed DOI
Wang Y. and Tajkhorshid E., “Electrostatic Funneling of Substrate in Mitochondrial Inner Membrane Carriers,” Proceedings of the National Academy of Sciences of the United States of America 105 (2008): 9598–9603, 10.1073/pnas.0801786105. PubMed DOI PMC
Jezek P., Orosz D. E., Modriansky M., and Garlid K. D., “Transport of Anions and Protons by the Mitochondrial Uncoupling Protein and Its Regulation by Nucleotides and Fatty‐Acids ‐ a New Look at Old Hypotheses,” Journal of Biological Chemistry 269 (1994): 26184–26190. PubMed
Skulj S. and Vazdar M., “Calculation of Apparent pKa Values of Saturated Fatty Acids With Different Lengths in DOPC Phospholipid Bilayers,” Physical Chemistry Chemical Physics 21 (2019): 10052–10060, 10.1039/c9cp01204d. PubMed DOI
Pashkovskaya A. A., Vazdar M., Zimmermann L., Jovanovic O., Pohl P., and Pohl E. E., “Mechanism of Long‐Chain Free Fatty Acid Protonation at the Membrane‐Water Interface,” Biophysical Journal 114 (2018): 2142–2151, 10.1016/j.bpj.2018.04.011. PubMed DOI PMC
Kamp F., Zakim D., Zhang F., Noy N., and Hamilton J. A., “Fatty Acid Flip‐Flop in Phospholipid Bilayers Is Extremely Fast,” Biochemistry 34 (1995): 11928–11937, 10.1021/bi00037a034. PubMed DOI
Kreiter J., Škulj S., Brkljača Z., Bardakji S., Vazdar M., and Pohl E. E., “FA Sliding as the Mechanism for the ANT1‐Mediated Fatty Acid Anion Transport in Lipid Bilayers,” International Journal of Molecular Sciences 24 (2023): 13701, 10.3390/ijms241813701. PubMed DOI PMC
Kreiter J., Tyschuk T., and Pohl E. E., “Uncoupling Protein 3 Catalyzes the Exchange of C4 Metabolites Similar to UCP2,” Biomolecules 14 (2023): 21, 10.3390/biom14010021. PubMed DOI PMC
Kang Y. and Chen L., “Structural Basis for the Binding of DNP and Purine Nucleotides Onto UCP1,” Nature 620 (2023): 226–231, 10.1038/s41586-023-06332-w. PubMed DOI
Jones S. A., Gogoi P., Ruprecht J. J., et al., “Structural Basis of Purine Nucleotide Inhibition of Human Uncoupling Protein 1,” Science Advances 9 (2023): eadh4251, 10.1126/sciadv.adh4251. PubMed DOI PMC
Jumper J., Evans R., Pritzel A., et al., “Highly Accurate Protein Structure Prediction With AlphaFold,” Nature 596 (2021): 583–589, 10.1038/s41586-021-03819-2. PubMed DOI PMC
Jovanovic O., Chekashkina K., Skulj S., et al., “Membrane Lipid Reshaping Underlies Oxidative Stress Sensing by the Mitochondrial Proteins UCP1 and ANT1,” Antioxidants (Basel) 11 (2022): 2314, 10.3390/antiox11122314. PubMed DOI PMC
Senoo N., Chinthapalli D. K., Baile M. G., et al., “Functional Diversity Among Cardiolipin Binding Sites on the Mitochondrial ADP/ATP Carrier,” EMBO Journal 43 (2024): 2979–3008, 10.1038/s44318-024-00132-2. PubMed DOI PMC
Pebay‐Peyroula E., Dahout‐Gonzalez C., Kahn R., Trézéguet V., Lauquin G. J. M., and Brandolin G., “Structure of Mitochondrial ADP/ATP Carrier in Complex With Carboxyatractyloside,” Nature 426 (2003): 39–44, 10.1038/nature02056. PubMed DOI
Zhao L., Wang S., Zhu Q., et al., “Specific Interaction of the Human Mitochondrial Uncoupling Protein 1 With Free Long‐Chain Fatty Acid,” Structure 25 (2017): 1371–1379, 10.1016/j.str.2017.07.005. PubMed DOI
Beck V., Jaburek M., Demina T., et al., “Polyunsaturated Fatty Acids Activate Human Uncoupling Proteins 1 and 2 in Planar Lipid Bilayers,” FASEB Journal 21 (2007): 1137–1144, 10.1096/fj.06-7489com. PubMed DOI
Lee J., Cheng X., Swails J. M., et al., “CHARMM‐GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field,” Journal of Chemical Theory and Computation 12 (2016): 405–413, 10.1021/acs.jctc.5b00935. PubMed DOI PMC
Jo S., Kim T., Iyer V. G., and Im W., “CHARMM‐GUI: A Web‐Based Graphical User Interface for CHARMM,” Journal of Computational Chemistry 29 (2008): 1859–1865, 10.1002/jcc.20945. PubMed DOI
Jo S., Lim J. B., Klauda J. B., and Im W., “CHARMM‐GUI Membrane Builder for Mixed Bilayers and Its Application to Yeast Membranes,” Biophysical Journal 97 (2009): 50–58, 10.1016/j.bpj.2009.04.013. PubMed DOI PMC
Wu E. L., Cheng X., Jo S., et al., “CHARMM‐GUI Membrane Builder Toward Realistic Biological Membrane Simulations,” Journal of Computational Chemistry 35 (2014): 1997–2004, 10.1002/jcc.23702. PubMed DOI PMC
Abraham M. J., Murtola T., Schulz R., et al., “GROMACS: High Performance Molecular Simulations Through Multi‐Level Parallelism From Laptops to Supercomputers,” SoftwareX 1‐2 (2015): 19–25, 10.1016/j.softx.2015.06.001. DOI
Huang J., Rauscher S., Nawrocki G., et al., “CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins,” Nature Methods 14 (2017): 71–73, 10.1038/nmeth.4067. PubMed DOI PMC
Jo S., Kim T., and Im W., “Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations,” PLoS One 2 (2007): e880, 10.1371/journal.pone.0000880. PubMed DOI PMC
Nosé S., “A Molecular Dynamics Method for Simulations in the Canonical Ensemble,” Molecular Physics 52 (1984): 255–268, 10.1080/00268978400101201. DOI
Parrinello M. and Rahman A., “Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method,” Journal of Applied Physics 52 (1981): 7182–7190, 10.1063/1.328693. DOI
Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., and Pedersen L. G., “A Smooth Particle Mesh Ewald Method,” Journal of Chemical Physics 103 (1995): 8577–8593, 10.1063/1.470117. DOI
Batcho P. F., Case D. A., and Schlick T., “Optimized Particle‐Mesh Ewald/Multiple‐Time Step Integration for Molecular Dynamics Simulations,” Journal of Chemical Physics 115 (2001): 4003–4018, 10.1063/1.1389854. DOI
Humphrey W., Dalke A., and Schulten K., “VMD: Visual Molecular Dynamics,” Journal of Molecular Graphics 14, no. 33–38 (1996): 27–38, 10.1016/0263-7855(96)00018-5. PubMed DOI
Aksimentiev A. and Schulten K., “Imaging Alpha‐Hemolysin With Molecular Dynamics: Ionic Conductance, Osmotic Permeability, and the Electrostatic Potential Map,” Biophysical Journal 88 (2005): 3745–3761, 10.1529/biophysj.104.058727. PubMed DOI PMC
Zuna K., Jovanovic O., Khailova L. S., et al., “Mitochondrial Uncoupling Proteins (UCP1‐UCP3) and Adenine Nucleotide Translocase (ANT1) Enhance the Protonophoric Action of 2,4‐Dinitrophenol in Mitochondria and Planar Bilayer Membranes,” Biomolecules 11 (2021): 1178, 10.3390/biom11081178. PubMed DOI PMC
Beck V., Jabůrek M., Breen E. P., Porter R. K., Ježek P., and Pohl E. E., “A New Automated Technique for the Reconstitution of Hydrophobic Proteins Into Planar Bilayer Membranes. Studies of Human Recombinant Uncoupling Protein 1,” Biochimica et Biophysica Acta 1757 (2006): 474–479, 10.1016/j.bbabio.2006.03.006. PubMed DOI