FA Sliding as the Mechanism for the ANT1-Mediated Fatty Acid Anion Transport in Lipid Bilayers
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P 31559
Austrian Science Fund FWF - Austria
PubMed
37762012
PubMed Central
PMC10531397
DOI
10.3390/ijms241813701
PII: ijms241813701
Knihovny.cz E-zdroje
- Klíčová slova
- AAC, ADP/ATP carrier, arachidonic acid, fatty acid cycling hypothesis, fatty acids anion transport, proton transport, uncoupling proteins,
- MeSH
- adenosintrifosfát metabolismus MeSH
- anionty metabolismus MeSH
- lipidové dvojvrstvy * MeSH
- mastné kyseliny metabolismus MeSH
- mitochondriální ADP/ATP-translokasy metabolismus MeSH
- protony * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát MeSH
- anionty MeSH
- lipidové dvojvrstvy * MeSH
- mastné kyseliny MeSH
- mitochondriální ADP/ATP-translokasy MeSH
- protony * MeSH
Mitochondrial adenine nucleotide translocase (ANT) exchanges ADP for ATP to maintain energy production in the cell. Its protonophoric function in the presence of long-chain fatty acids (FA) is also recognized. Our previous results imply that proton/FA transport can be best described with the FA cycling model, in which protonated FA transports the proton to the mitochondrial matrix. The mechanism by which ANT1 transports FA anions back to the intermembrane space remains unclear. Using a combined approach involving measurements of the current through the planar lipid bilayers reconstituted with ANT1, site-directed mutagenesis and molecular dynamics simulations, we show that the FA anion is first attracted by positively charged arginines or lysines on the matrix side of ANT1 before moving along the positively charged protein-lipid interface and binding to R79, where it is protonated. We show that R79 is also critical for the competitive binding of ANT1 substrates (ADP and ATP) and inhibitors (carboxyatractyloside and bongkrekic acid). The binding sites are well conserved in mitochondrial SLC25 members, suggesting a general mechanism for transporting FA anions across the inner mitochondrial membrane.
Zobrazit více v PubMed
Nicholls D.G. The bioenergetics of brown adipose tissue mitochondria. FEBS Lett. 1976;61:103–110. doi: 10.1016/0014-5793(76)81014-9. PubMed DOI
Krauss S., Zhang C.Y., Lowell B.B. The mitochondrial uncoupling-protein homologues. Nat. Rev. Mol. Cell Biol. 2005;6:248–261. doi: 10.1038/nrm1592. PubMed DOI
Zackova M., Skobisova E., Urbankova E., Jezek P. Activating omega-6 polyunsaturated fatty acids and inhibitory purine nucleotides are high affinity ligands for novel mitochondrial uncoupling proteins UCP2 and UCP3. J. Biol. Chem. 2003;278:20761–20769. doi: 10.1074/jbc.M212850200. PubMed DOI
Andreyev A., Bondareva T.O., Dedukhova V.I., Mokhova E.N., Skulachev V.P., Tsofina L.M., Volkov N.I., Vygodina T.V. The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria. Eur. J. Biochem. 1989;182:585–592. doi: 10.1111/j.1432-1033.1989.tb14867.x. PubMed DOI
Brustovetsky N., Klingenberg M. The Reconstituted Adp/Atp Carrier Can Mediate H+ Transport by Free Fatty-Acids, Which Is Further Stimulated by Mersalyl. J. Biol. Chem. 1994;269:27329–27336. doi: 10.1016/S0021-9258(18)46989-X. PubMed DOI
Kreiter J., Rupprecht A., Skulj S., Brkljaca Z., Zuna K., Knyazev D.G., Bardakji S., Vazdar M., Pohl E.E. ANT1 Activation and Inhibition Patterns Support the Fatty Acid Cycling Mechanism for Proton Transport. Int. J. Mol. Sci. 2021;22:2490. doi: 10.3390/ijms22052490. PubMed DOI PMC
Bertholet A.M., Chouchani E.T., Kazak L., Angelin A., Fedorenko A., Long J.Z., Vidoni S., Garrity R., Cho J., Terada N., et al. H(+) transport is an integral function of the mitochondrial ADP/ATP carrier. Nature. 2019;571:515–520. doi: 10.1038/s41586-019-1400-3. PubMed DOI PMC
Urbankova E., Voltchenko A., Pohl P., Jezek P., Pohl E.E. Transport kinetics of uncoupling proteins. Analysis of UCP1 reconstituted in planar lipid bilayers. J. Biol. Chem. 2003;278:32497–32500. doi: 10.1074/jbc.M303721200. PubMed DOI
Beck V., Jaburek M., Demina T., Rupprecht A., Porter R.K., Jezek P., Pohl E.E. Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers. FASEB J. 2007;21:1137–1144. doi: 10.1096/fj.06-7489com. PubMed DOI
Macher G., Koehler M., Rupprecht A., Kreiter J., Hinterdorfer P., Pohl E.E. Inhibition of mitochondrial UCP1 and UCP3 by purine nucleotides and phosphate. Biochim. Biophys. Acta Biomembr. 2018;1860:664–672. doi: 10.1016/j.bbamem.2017.12.001. PubMed DOI PMC
Pohl E.E., Rupprecht A., Macher G., Hilse K.E. Important Trends in UCP3 Investigation. Front. Physiol. 2019;10:470. doi: 10.3389/fphys.2019.00470. PubMed DOI PMC
Skulachev V.P. Fatty-Acid Circuit as a Physiological Mechanism of Uncoupling of Oxidative-Phosphorylation. FEBS Lett. 1991;294:158–162. doi: 10.1016/0014-5793(91)80658-P. PubMed DOI
Kamp F., Hamilton J.A. pH gradients across phospholipid membranes caused by fast flip-flop of un-ionized fatty acids. Proc. Natl. Acad. Sci. USA. 1992;89:11367–11370. doi: 10.1073/pnas.89.23.11367. PubMed DOI PMC
Kamp F., Zakim D., Zhang F., Noy N., Hamilton J.A. Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry. 1995;34:11928–11937. doi: 10.1021/bi00037a034. PubMed DOI
Winkler E., Klingenberg M. Effect of fatty acids on H+ transport activity of the reconstituted uncoupling protein. J. Biol. Chem. 1994;269:2508–2515. doi: 10.1016/S0021-9258(17)41974-0. PubMed DOI
Wang Y., Tajkhorshid E. Electrostatic funneling of substrate in mitochondrial inner membrane carriers. Proc. Natl. Acad. Sci. USA. 2008;105:9598–9603. doi: 10.1073/pnas.0801786105. PubMed DOI PMC
Pebay-Peyroula E., Dahout-Gonzalez C., Kahn R., Trezeguet V., Lauquin G.J., Brandolin G. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature. 2003;426:39–44. doi: 10.1038/nature02056. PubMed DOI
Kreiter J., Brkljača Z., Škulj S., Bardakji S., Vazdar M., Pohl E.E. Mechanism of the ANT-mediated transport of fatty acid anions across the inner mitochondrial membrane. bioRxiv. 2022 doi: 10.1101/2022.06.27.497434. bioRxiv:2022.06.27.497434. DOI
Beck V., Jaburek M., Breen E.P., Porter R.K., Jezek P., Pohl E.E. A new automated technique for the reconstitution of hydrophobic proteins into planar bilayer membranes. Studies of human recombinant uncoupling protein 1. Biochim. Biophys. Acta. 2006;1757:474–479. doi: 10.1016/j.bbabio.2006.03.006. PubMed DOI
Kreiter J., Beitz E., Pohl E.E. A Fluorescence-Based Method to Measure ADP/ATP Exchange of Recombinant Adenine Nucleotide Translocase in Liposomes. Biomolecules. 2020;10:685. doi: 10.3390/biom10050685. PubMed DOI PMC
Heidkamper D., Muller V., Nelson D.R., Klingenberg M. Probing the role of positive residues in the ADP/ATP carrier from yeast. The effect of six arginine mutations on transport and the four ATP versus ADP exchange modes. Biochemistry. 1996;35:16144–16152. doi: 10.1021/bi960668j. PubMed DOI
King M.S., Kerr M., Crichton P.G., Springett R., Kunji E.R.S. Formation of a cytoplasmic salt bridge network in the matrix state is a fundamental step in the transport mechanism of the mitochondrial ADP/ATP carrier. Biochim. Biophys. Acta. 2016;1857:14–22. doi: 10.1016/j.bbabio.2015.09.013. PubMed DOI PMC
Kreiter J., Skulj S., Brkljaca Z., Zuna K., Vazdar M., Pohl E.E. The transport of fatty acid anions across the inner mitochondrial membrane by the adenine nucleotide translocase. Eur. Biophys. J. 2021;50((Suppl. S1)):S57. doi: 10.1016/j.bpj.2021.11.1180. DOI
Škulj S., Brkljača Z., Vazdar M. Molecular Dynamics Simulations of the Elusive Matrix-Open State of Mitochondrial ADP/ATP Carrier. Isr. J. Chem. 2020;60:735–743. doi: 10.1002/ijch.202000011. DOI
Bertholet A.M., Natale A.M., Bisignano P., Suzuki J., Fedorenko A., Hamilton J., Brustovetsky T., Kazak L., Garrity R., Chouchani E.T., et al. Mitochondrial uncouplers induce proton leak by activating AAC and UCP1. Nature. 2022;606:180–187. doi: 10.1038/s41586-022-04747-5. PubMed DOI PMC
Mifsud J., Ravaud S., Krammer E.M., Chipot C., Kunji E.R., Pebay-Peyroula E., Dehez F. The substrate specificity of the human ADP/ATP carrier AAC1. Mol. Membr. Biol. 2013;30:160–168. doi: 10.3109/09687688.2012.745175. PubMed DOI
Ruprecht J.J., Hellawell A.M., Harding M., Crichton P.G., McCoy A.J., Kunji E.R. Structures of yeast mitochondrial ADP/ATP carriers support a domain-based alternating-access transport mechanism. Proc. Natl. Acad. Sci. USA. 2014;111:E426–E434. doi: 10.1073/pnas.1320692111. PubMed DOI PMC
Mavridou V., King M.S., Tavoulari S., Ruprecht J.J., Palmer S.M., Kunji E.R.S. Substrate binding in the mitochondrial ADP/ATP carrier is a step-wise process guiding the structural changes in the transport cycle. Nat. Commun. 2022;13:3585. doi: 10.1038/s41467-022-31366-5. PubMed DOI PMC
Skulj S., Vazdar M. Calculation of apparent pKa values of saturated fatty acids with different lengths in DOPC phospholipid bilayers. Phys. Chem. Chem. Phys. 2019;21:10052–10060. doi: 10.1039/C9CP01204D. PubMed DOI
Hedger G., Rouse S.L., Domanski J., Chavent M., Koldso H., Sansom M.S. Lipid-Loving ANTs: Molecular Simulations of Cardiolipin Interactions and the Organization of the Adenine Nucleotide Translocase in Model Mitochondrial Membranes. Biochemistry. 2016;55:6238–6249. doi: 10.1021/acs.biochem.6b00751. PubMed DOI PMC
Senoo N., Chinthapalli D.K., Baile M.G., Golla V.K., Saha B., Ogunbona O.B., Saba J.A., Munteanu T., Valdez Y., Whited K., et al. Conserved cardiolipin-mitochondrial ADP/ATP carrier interactions assume distinct structural and functional roles that are clinically relevant. bioRxiv. 2023 doi: 10.1101/2023.05.05.539595. DOI
Beyer K., Klingenberg M. ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry. 1985;24:3821–3826. doi: 10.1021/bi00336a001. PubMed DOI
Kunji E.R., Robinson A.J. Coupling of proton and substrate translocation in the transport cycle of mitochondrial carriers. Curr. Opin. Struct. Biol. 2010;20:440–447. doi: 10.1016/j.sbi.2010.06.004. PubMed DOI
Zoonens M., Comer J., Masscheleyn S., Pebay-Peyroula E., Chipot C., Miroux B., Dehez F. Dangerous liaisons between detergents and membrane proteins. The case of mitochondrial uncoupling protein 2. J. Am. Chem. Soc. 2013;135:15174–15182. doi: 10.1021/ja407424v. PubMed DOI
Chipot C., Dehez F., Schnell J.R., Zitzmann N., Pebay-Peyroula E., Catoire L.J., Miroux B., Kunji E.R.S., Veglia G., Cross T.A., et al. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem. Rev. 2018;118:3559–3607. doi: 10.1021/acs.chemrev.7b00570. PubMed DOI PMC
Phelps A., Wohlrab H. Mitochondrial phosphate transport. The Saccharomyces cerevisiae (threonine 43 to cysteine) mutant protein explicitly identifies transport with genomic sequence. J. Biol. Chem. 1991;266:19882–19885. doi: 10.1016/S0021-9258(18)54864-X. PubMed DOI
Cavero S., Vozza A., del Arco A., Palmieri L., Villa A., Blanco E., Runswick M.J., Walker J.E., Cerdan S., Palmieri F., et al. Identification and metabolic role of the mitochondrial aspartate-glutamate transporter in Saccharomyces cerevisiae. Mol. Microbiol. 2003;50:1257–1269. doi: 10.1046/j.1365-2958.2003.03742.x. PubMed DOI
Wojtczak L., Wieckowski M.R., Schonfeld P. Protonophoric activity of fatty acid analogs and derivatives in the inner mitochondrial membrane: A further argument for the fatty acid cycling model. Arch. Biochem. Biophys. 1998;357:76–84. doi: 10.1006/abbi.1998.0777. PubMed DOI
Shimabukuro M., Zhou Y.T., Levi M., Unger R.H. Fatty acid-induced beta cell apoptosis: A link between obesity and diabetes. Proc. Natl. Acad. Sci. USA. 1998;95:2498–2502. doi: 10.1073/pnas.95.5.2498. PubMed DOI PMC
Kenno K.A., Severson D.L. Lipolysis in isolated myocardial cells from diabetic rat hearts. Am. J. Physiol. 1985;249:H1024–H1030. doi: 10.1152/ajpheart.1985.249.5.H1024. PubMed DOI
Van der Vusse G.J., Glatz J.F.C., Van Nieuwenhoven F.A., Reneman R.S., Bassingthwaighte J.B. Transport of long-chain fatty acids across the muscular endothelium. Skelet. Muscle Metab. Exerc. Diabetes. 1998;441:181–191. PubMed PMC
Vik-Mo H., Mjos O.D. Influence of free fatty acids on myocardial oxygen consumption and ischemic injury. Am. J. Cardiol. 1981;48:361–365. doi: 10.1016/0002-9149(81)90621-4. PubMed DOI
Takeuchi Y., Morii H., Tamura M., Hayaishi O., Watanabe Y. A possible mechanism of mitochondrial dysfunction during cerebral ischemia: Inhibition of mitochondrial respiration activity by arachidonic acid. Arch. Biochem. Biophys. 1991;289:33–38. doi: 10.1016/0003-9861(91)90438-O. PubMed DOI
Berardi M.J., Chou J.J. Fatty acid flippase activity of UCP2 is essential for its proton transport in mitochondria. Cell Metab. 2014;20:541–552. doi: 10.1016/j.cmet.2014.07.004. PubMed DOI PMC
Skulj S., Brkljaca Z., Kreiter J., Pohl E.E., Vazdar M. Molecular Dynamics Simulations of Mitochondrial Uncoupling Protein 2. Int. J. Mol. Sci. 2021;22:1214. doi: 10.3390/ijms22031214. PubMed DOI PMC
Bertholet A.M., Kirichok Y. The Mechanism FA-Dependent H(+) Transport by UCP1. Brown Adipose Tissue. 2019;251:143–159. doi: 10.1007/164_2018_138. PubMed DOI
Pashkovskaya A.A., Vazdar M., Zimmermann L., Jovanovic O., Pohl P., Pohl E.E. Mechanism of Long-Chain Free Fatty Acid Protonation at the Membrane-Water Interface. Biophys. J. 2018;114:2142–2151. doi: 10.1016/j.bpj.2018.04.011. PubMed DOI PMC
Simard J.R., Pillai B.K., Hamilton J.A. Fatty acid flip-flop in a model membrane is faster than desorption into the aqueous phase. Biochemistry. 2008;47:9081–9089. doi: 10.1021/bi800697q. PubMed DOI
Malvezzi M., Andra K.K., Pandey K., Lee B.C., Falzone M.E., Brown A., Iqbal R., Menon A.K., Accardi A. Out-of-the-groove transport of lipids by TMEM16 and GPCR scramblases. Proc. Natl. Acad. Sci. USA. 2018;115:E7033–E7042. doi: 10.1073/pnas.1806721115. PubMed DOI PMC
Brunner J.D., Lim N.K., Schenck S., Duerst A., Dutzler R. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature. 2014;516:207–212. doi: 10.1038/nature13984. PubMed DOI
Vork M.M., Glatz J.F.C., Vandervusse G.J. On the Mechanism of Long-Chain Fatty-Acid Transport in Cardiomyocytes as Facilitated by Cytoplasmic Fatty Acid-Binding Protein. J. Theor. Biol. 1993;160:207–222. doi: 10.1006/jtbi.1993.1014. PubMed DOI
Richieri G.V., Ogata R.T., Kleinfeld A.M. Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB. J. Biol. Chem. 1994;269:23918–23930. doi: 10.1016/S0021-9258(19)51026-2. PubMed DOI
Pomorski T., Menon A.K. Lipid flippases and their biological functions. Cell. Mol. Life Sci. 2006;63:2908–2921. doi: 10.1007/s00018-006-6167-7. PubMed DOI PMC
Bevers E.M., Williamson P.L. Phospholipid scramblase: An update. FEBS Lett. 2010;584:2724–2730. doi: 10.1016/j.febslet.2010.03.020. PubMed DOI
Bartos L., Kabelka I., Vacha R. Enhanced translocation of amphiphilic peptides across membranes by transmembrane proteins. Biophys. J. 2021;120:2296–2305. doi: 10.1016/j.bpj.2021.04.005. PubMed DOI PMC
Suzuki J., Umeda M., Sims P.J., Nagata S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature. 2010;468:834–838. doi: 10.1038/nature09583. PubMed DOI
Neculai D., Schwake M., Ravichandran M., Zunke F., Collins R.F., Peters J., Neculai M., Plumb J., Loppnau P., Pizarro J.C., et al. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature. 2013;504:172–176. doi: 10.1038/nature12684. PubMed DOI
Ruprecht J.J., King M.S., Zogg T., Aleksandrova A.A., Pardon E., Crichton P.G., Steyaert J., Kunji E.R.S. The Molecular Mechanism of Transport by the Mitochondrial ADP/ATP Carrier. Cell. 2019;176:435–447 e415. doi: 10.1016/j.cell.2018.11.025. PubMed DOI PMC
Ballesteros A., Swartz K.J. Lipids surf the groove in scramblases. Proc. Natl. Acad. Sci. USA. 2018;115:7648–7650. doi: 10.1073/pnas.1809472115. PubMed DOI PMC
Kunji E.R., Robinson A.J. The conserved substrate binding site of mitochondrial carriers. Biochim. Biophys. Acta. 2006;1757:1237–1248. doi: 10.1016/j.bbabio.2006.03.021. PubMed DOI
Robinson A.J., Kunji E.R.S. Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proc. Natl. Acad. Sci. USA. 2006;103:2617–2622. doi: 10.1073/pnas.0509994103. PubMed DOI PMC
Dehez F., Pebay-Peyroula E., Chipot C. Binding of ADP in the mitochondrial ADP/ATP carrier is driven by an electrostatic funnel. J. Am. Chem. Soc. 2008;130:12725–12733. doi: 10.1021/ja8033087. PubMed DOI
Robinson A.J., Overy C., Kunji E.R. The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc. Natl. Acad. Sci. USA. 2008;105:17766–17771. doi: 10.1073/pnas.0809580105. PubMed DOI PMC
Ruprecht J.J., Kunji E.R. Structural changes in the transport cycle of the mitochondrial ADP/ATP carrier. Curr. Opin. Struct. Biol. 2019;57:135–144. doi: 10.1016/j.sbi.2019.03.029. PubMed DOI PMC
Fedorenko A., Lishko P.V., Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell. 2012;151:400–413. doi: 10.1016/j.cell.2012.09.010. PubMed DOI PMC
Palmieri L., Agrimi G., Runswick M.J., Fearnley I.M., Palmieri F., Walker J.E. Identification in Saccharomyces cerevisiae of two isoforms of a novel mitochondrial transporter for 2-oxoadipate and 2-oxoglutarate. J. Biol. Chem. 2001;276:1916–1922. doi: 10.1074/jbc.M004332200. PubMed DOI
Wulf R., Kaltstein A., Klingenberg M. H+ and cation movements associated with ADP, ATP transport in mitochondria. Eur. J. Biochem. 1978;82:585–592. doi: 10.1111/j.1432-1033.1978.tb12054.x. PubMed DOI
LaNoue K., Mizani S.M., Klingenberg M. Electrical imbalance of adenine nucleotide transport across the mitochondrial membrane. J. Biol. Chem. 1978;253:191–198. doi: 10.1016/S0021-9258(17)38287-X. PubMed DOI
Ruprecht J.J., Kunji E.R.S. The SLC25 Mitochondrial Carrier Family: Structure and Mechanism. Trends Biochem. Sci. 2020;45:244–258. doi: 10.1016/j.tibs.2019.11.001. PubMed DOI PMC
Palmieri F. The mitochondrial transporter family SLC25: Identification, properties and physiopathology. Mol. Aspects Med. 2013;34:465–484. doi: 10.1016/j.mam.2012.05.005. PubMed DOI
Pietropaolo A., Pierri C.L., Palmieri F., Klingenberg M. The switching mechanism of the mitochondrial ADP/ATP carrier explored by free-energy landscapes. Biochim. Biophys. Acta. 2016;1857:772–781. doi: 10.1016/j.bbabio.2016.02.006. PubMed DOI
Ardalan A., Sowlati-Hashjin S., Uwumarenogie S.O., Fish M., Mitchell J., Karttunen M., Smith M.D., Jelokhani-Niaraki M. Functional Oligomeric Forms of Uncoupling Protein 2: Strong Evidence for Asymmetry in Protein and Lipid Bilayer Systems. J. Phys. Chem. B. 2021;125:169–183. doi: 10.1021/acs.jpcb.0c09422. PubMed DOI
Ardalan A., Sowlati-Hashjin S., Oduwoye H., Uwumarenogie S.O., Karttunen M., Smith M.D., Jelokhani-Niaraki M. Biphasic Proton Transport Mechanism for Uncoupling Proteins. J. Phys. Chem. B. 2021;125:9130–9144. doi: 10.1021/acs.jpcb.1c04766. PubMed DOI
Kunji E.R., Crichton P.G. Mitochondrial carriers function as monomers. Biochim. Biophys. Acta. 2010;1797:817–831. doi: 10.1016/j.bbabio.2010.03.023. PubMed DOI
Kunji E.R.S., Ruprecht J.J. The mitochondrial ADP/ATP carrier exists and functions as a monomer. Biochem. Soc. Trans. 2020;48:1419–1432. doi: 10.1042/BST20190933. PubMed DOI PMC
Kunji E.R.S., King M.S., Ruprecht J.J., Thangaratnarajah C. The SLC25 Carrier Family: Important Transport Proteins in Mitochondrial Physiology and Pathology. Physiology. 2020;35:302–327. doi: 10.1152/physiol.00009.2020. PubMed DOI PMC
Wieckowski M.R., Wojtczak L. Involvement of the dicarboxylate carrier in the protonophoric action of long-chain fatty acids in mitochondria. Biochem. Biophys. Res. Commun. 1997;232:414–417. doi: 10.1006/bbrc.1997.6298. PubMed DOI
Samartsev V.N., Smirnov A.V., Zeldi I.P., Markova O.V., Mokhova E.N., Skulachev V.P. Involvement of aspartate/glutamate antiporter in fatty acid-induced uncoupling of liver mitochondria. Biochim. Biophys. Acta. 1997;1319:251–257. doi: 10.1016/S0005-2728(96)00166-1. PubMed DOI
Webb B., Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinform. 2014;47:1–37. doi: 10.1002/0471250953.bi0506s47. PubMed DOI
Jo S., Lim J.B., Klauda J.B., Im W. CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. Biophys. J. 2009;97:50–58. doi: 10.1016/j.bpj.2009.04.013. PubMed DOI PMC
Wu E.L., Cheng X., Jo S., Rui H., Song K.C., Davila-Contreras E.M., Qi Y., Lee J., Monje-Galvan V., Venable R.M., et al. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J. Comput. Chem. 2014;35:1997–2004. doi: 10.1002/jcc.23702. PubMed DOI PMC
Lee J., Cheng X., Swails J.M., Yeom M.S., Eastman P.K., Lemkul J.A., Wei S., Buckner J., Jeong J.C., Qi Y., et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016;12:405–413. doi: 10.1021/acs.jctc.5b00935. PubMed DOI PMC
Jo S., Kim T., Im W. Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS ONE. 2007;2:e880. doi: 10.1371/journal.pone.0000880. PubMed DOI PMC
Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984;52:255–268. doi: 10.1080/00268978400101201. DOI
Parrinello M., Rahman A. Polymorphic Transitions in Single-Crystals—A New Molecular-Dynamics Method. J. Appl. Physiol. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B.L., Grubmuller H., MacKerell A.D., Jr. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods. 2017;14:71–73. doi: 10.1038/nmeth.4067. PubMed DOI PMC
Aksimentiev A., Schulten K. Imaging alpha-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J. 2005;88:3745–3761. doi: 10.1529/biophysj.104.058727. PubMed DOI PMC
Batcho P.F., Case D.A., Schlick T. Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations. J. Chem. Phys. 2001;115:4003–4018. doi: 10.1063/1.1389854. DOI
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI