Exploring the proton transport mechanism of the mitochondrial ADP/ATP carrier: FA-cycling hypothesis and beyond
Language English Country United States Media print
Document type Journal Article, Review
Grant support
860592
Horizon 2020 Framework Programme
OPEN-30-53
Ministry of Education, Youth and Sports of the Czech Republic
University of Veterinary Medicine Vienna
PubMed
39969060
PubMed Central
PMC11837047
DOI
10.1002/pro.70047
Knihovny.cz E-resources
- Keywords
- MD simulations, bilayer lipid membranes, membrane proteins, mitochondrial transporter, reconstituted protein, uncoupling protein,
- MeSH
- 2,4-Dinitrophenol pharmacology metabolism MeSH
- Ion Transport MeSH
- Humans MeSH
- Fatty Acids metabolism MeSH
- Mitochondrial ADP, ATP Translocases * metabolism chemistry MeSH
- Mitochondrial Membranes metabolism MeSH
- Mitochondria metabolism MeSH
- Protons * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- 2,4-Dinitrophenol MeSH
- Fatty Acids MeSH
- Mitochondrial ADP, ATP Translocases * MeSH
- Protons * MeSH
The mitochondrial ADP/ATP carrier (AAC, ANT), a member of the SLC25 family of solute carriers, plays a critical role in transporting purine nucleotides (ATP and ADP) as well as protons across the inner mitochondrial membrane. However, the precise mechanism and physiological significance of proton transport by ADP/ATP carrier remain unclear. Notably, the presence of uncouplers-such as long-chain fatty acids (FA) or artificial compounds like dinitrophenol (DNP)-is essential for this process. We explore two potential mechanisms that describe ADP/ATP carrier as either (i) a proton carrier that functions in the presence of FA or DNP, or (ii) an anion transporter (FA- or DNP). In the latter case, the proton is translocated by the neutral form of FA, which carries it from the matrix to the intermembrane space (FA-cycling hypothesis). Our recent results support this hypothesis. We describe a four-step mechanism for the "sliding" of the FA anion from the matrix to the mitochondrial intermembrane space and discuss a possible generalization of this mechanism to other SLC25 carriers.
See more in PubMed
Andreyev A, Bondareva TO, Dedukhova VI, Mokhova EN, Skulachev VP, Tsofina LM, et al. The ATP/ADP‐antiporter is involved in the uncoupling effect of fatty acids on mitochondria. Eur J Biochem. 1989;182:585–592. 10.1111/j.1432-1033.1989.tb14867.x PubMed DOI
Andreyev A, Bondareva TO, Dedukhova VI, Mokhova EN, Skulachev VP, Volkov NI. Carboxyatractylate inhibits the uncoupling effect of free fatty acids. FEBS Lett. 1988;226:265–269. 10.1016/0014-5793(88)81436-4 PubMed DOI
Beck V, Jaburek M, Demina T, Rupprecht A, Porter RK, Jezek P, et al. Polyunsaturated fatty acids activate human uncoupling proteins 1 and 2 in planar lipid bilayers. FASEB J. 2007;21:1137–1144. 10.1096/fj.06-7489com PubMed DOI
Bertholet AM, Chouchani ET, Kazak L, Angelin A, Fedorenko A, Long JZ, et al. H(+) transport is an integral function of the mitochondrial ADP/ATP carrier. Nature. 2019;571:515–520. 10.1038/s41586-019-1400-3 PubMed DOI PMC
Bertholet AM, Natale AM, Bisignano P, Suzuki J, Fedorenko A, Hamilton J, et al. Mitochondrial uncouplers induce proton leak by activating AAC and UCP1. Nature. 2022;606:180–187. 10.1038/s41586-022-04747-5 PubMed DOI PMC
Bienengraeber M, Echtay KS, Klingenberg M. H+ transport by uncoupling protein (UCP‐1) is dependent on a histidine pair, absent in UCP‐2 and UCP‐3. Biochemistry. 1998;37:3–8. 10.1021/bi972463w PubMed DOI
Bouillaud F, Alves‐Guerra MC, Ricquier D. UCPs, at the interface between bioenergetics and metabolism. Biochim Biophys Acta. 2016;1863:2443–2456. 10.1016/j.bbamcr.2016.04.013 PubMed DOI
Brand MD. The proton leak across the mitochondrial inner membrane. Biochim Biophys Acta. 1990;1018:128–133. 10.1016/0005-2728(90)90232-s PubMed DOI
Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS, et al. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J. 2005;392:353–362. 10.1042/BJ20050890 PubMed DOI PMC
Brookes PS, Buckingham JA, Tenreiro AM, Hulbert AJ, Brand MD. The proton permeability of the inner membrane of liver mitochondria from ectothermic and endothermic vertebrates and from obese rats: correlations with standard metabolic rate and phospholipid fatty acid composition. Comp Biochem Physiol B Biochem Mol Biol. 1998;119:325–334. 10.1016/s0305-0491(97)00357-x PubMed DOI
Brower JV, Rodic N, Seki T, Jorgensen M, Fliess N, Yachnis AT, et al. Evolutionarily conserved mammalian adenine nucleotide translocase 4 is essential for spermatogenesis. J Biol Chem. 2007;282:29658–29666. 10.1074/jbc.M704386200 PubMed DOI
Brustovetsky N, Becker A, Klingenberg M, Bamberg E. Electrical currents associated with nucleotide transport by the reconstituted mitochondrial ADP/ATP carrier. Proc Natl Acad Sci U S A. 1996;93:664–668. 10.1073/pnas.93.2.664 PubMed DOI PMC
Brustovetsky N, Klingenberg M. The reconstituted ADP/ATP carrier can mediate H+ transport by free fatty acids, which is further stimulated by mersalyl. J Biol Chem. 1994;269:27329–27336. 10.1016/S0021-9258(18)46989-X PubMed DOI
Brustovetsky NN, Mayevsky EI, Grishina EV, Gogvadze VG, Amerkhanov ZG. Regulation of the rate of respiration and oxidative phosphorylation in liver mitochondria from hibernating ground squirrels, Citellus undulatus . Comp Biochem Physiol B. 1989;94:537–541. 10.1016/0305-0491(89)90193-4 PubMed DOI
Cadenas S. ROS and redox signaling in myocardial ischemia‐reperfusion injury and cardioprotection. Free Radic Biol Med. 2018;117:76–89. 10.1016/j.freeradbiomed.2018.01.024 PubMed DOI
Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359. 10.1152/physrev.00015.2003 PubMed DOI
Chevrollier A, Loiseau D, Reynier P, Stepien G. Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. Biochim Biophys Acta. 2011;1807:562–567. 10.1016/j.bbabio.2010.10.008 PubMed DOI
Clemencon B, Babot M, Trezeguet V. The mitochondrial ADP/ATP carrier (SLC25 family): pathological implications of its dysfunction. Mol Aspects Med. 2013;34:485–493. 10.1016/j.mam.2012.05.006 PubMed DOI
De Leonardis F, Ahmed A, Vozza A, Capobianco L, Riley CL, Barile SN, et al. Human mitochondrial uncoupling protein 3 functions as a metabolite transporter. FEBS Lett. 2024;598:338–346. 10.1002/1873-3468.14784 PubMed DOI PMC
Dierks T, Riemer E, Kramer R. Reaction mechanism of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria. Biochim Biophys Acta. 1988;943:231–244. 10.1016/0005-2736(88)90555-x PubMed DOI
Divakaruni AS, Brand MD. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda). 2011;26:192–205. 10.1152/physiol.00046.2010 PubMed DOI
Emre Y, Hurtaud C, Ricquier D, Bouillaud F, Hughes J, Criscuolo F. Avian UCP: the killjoy in the evolution of the mitochondrial uncoupling proteins. J Mol Evol. 2007;65:392–402. 10.1007/s00239-007-9020-1 PubMed DOI
Esteves TC, Echtay KS, Jonassen T, Clarke CF, Brand MD. Ubiquinone is not required for proton conductance by uncoupling protein 1 in yeast mitochondria. Biochem J. 2004;379:309–315. PubMed PMC
Fedorenko A, Lishko PV, Kirichok Y. Mechanism of fatty‐acid‐dependent UCP1 uncoupling in brown fat mitochondria. Cell. 2012;151:400–413. 10.1016/j.cell.2012.09.010 PubMed DOI PMC
Ferrada E, Superti‐Furga G. A structure and evolutionary‐based classification of solute carriers. iScience. 2022;25:105096. 10.1016/j.isci.2022.105096 PubMed DOI PMC
Garlid KD, Jaburek M, Jezek P. Mechanism of uncoupling protein action. Biochem Soc Trans. 2001;29:803–806. 10.1042/0300-5127:0290803 PubMed DOI
Garlid KD, Orosz DE, Modriansky M, Vassanelli S, Jezek P. On the mechanism of fatty acid‐induced proton transport by mitochondrial uncoupling protein. J Biol Chem. 1996;271:2615–2620. 10.1074/jbc.271.5.2615 PubMed DOI
Gorgoglione R, Porcelli V, Santoro A, Daddabbo L, Vozza A, Monné M, et al. The human uncoupling proteins 5 and 6 (UCP5/SLC25A14 and UCP6/SLC25A30) transport sulfur oxyanions, phosphate and dicarboxylates. Biochim Biophys Acta Bioenerg. 2019;1860:724–733. 10.1016/j.bbabio.2019.07.010 PubMed DOI
Gropp T, Brustovetsky N, Klingenberg M, Müller V, Fendler K, Bamberg E. Kinetics of electrogenic transport by the ADP/ATP carrier. Biophys J. 1999;77:714–726. 10.1016/S0006-3495(99)76926-2 PubMed DOI PMC
Grundlingh J, Dargan PI, El‐Zanfaly M, Wood DM. 2,4‐dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J Med Toxicol. 2011;7:205–212. 10.1007/s13181-011-0162-6 PubMed DOI PMC
Heldt HW, Jacobs H, Klingenberg M. Endogenous Adp of mitochondria, an early phosphate acceptor of oxidative phosphorylation as disclosed by kinetic studies with C14 labelled Adp and Atp and with Atractyloside. Biochem Biophys Res Commun. 1965;18:174–179. 10.1016/0006-291x(65)90736-9 PubMed DOI
Hoang T, Smith MD, Jelokhani‐Niaraki M. Toward understanding the mechanism of ion transport activity of neuronal uncoupling proteins UCP2, UCP4, and UCP5. Biochemistry. 2012;51:4004–4014. 10.1021/bi3003378 PubMed DOI
Jaburek M, Garlid KD. Reconstitution of recombinant uncoupling proteins: UCP1, ‐2, and ‐3 have similar affinities for ATP and are unaffected by coenzyme Q10. J Biol Chem. 2003;278:25825–25831. 10.1074/jbc.M302126200 PubMed DOI
Jovanovic O, Chekashkina K, Škulj S, Žuna K, Vazdar M, Bashkirov PV, et al. Membrane lipid reshaping underlies oxidative stress sensing by the mitochondrial proteins UCP1 and ANT1. Antioxidants (Basel). 2022;11:2314. 10.3390/antiox11122314 PubMed DOI PMC
Jovanovic O, Skulj S, Pohl EE, Vazdar M. Covalent modification of phosphatidylethanolamine by 4‐hydroxy‐2‐nonenal increases sodium permeability across phospholipid bilayer membranes. Free Radic Biol Med. 2019;143:433–440. 10.1016/j.freeradbiomed.2019.08.027 PubMed DOI PMC
Kamp F, Hamilton JA. pH gradients across phospholipid membranes caused by fast flip‐flop of un‐ionized fatty acids. Proc Natl Acad Sci U S A. 1992;89:11367–11370. 10.1073/pnas.89.23.11367 PubMed DOI PMC
Karch J, Molkentin JD. Identifying the components of the elusive mitochondrial permeability transition pore. Proc Natl Acad Sci U S A. 2014;111:10396–10397. 10.1073/pnas.1410104111 PubMed DOI PMC
Keipert S, Gaudry MJ, Kutschke M, Keuper M, dela Rosa MAS, Cheng Y, et al. Two‐stage evolution of mammalian adipose tissue thermogenesis. Science. 2024;384:1111–1117. 10.1126/science.adg1947 PubMed DOI
Klingenberg M. Molecular aspects of the adenine nucleotide carrier from mitochondria. Arch Biochem Biophys. 1989;270:1–14. 10.1016/0003-9861(89)90001-5 PubMed DOI
Klingenberg M. Wanderings in bioenergetics and biomembranes. Biochim Biophys Acta. 2010;1797:579–594. 10.1016/j.bbabio.2010.02.012 PubMed DOI
Krauss S, Zhang CY, Lowell BB. The mitochondrial uncoupling‐protein homologues. Nat Rev Mol Cell Biol. 2005;6:248–261. 10.1038/nrm1592 PubMed DOI
Kreiter J, Rupprecht A, Škulj S, Brkljača Z, Žuna K, Knyazev DG, et al. ANT1 activation and inhibition patterns support the fatty acid cycling mechanism for proton transport. Int J Mol Sci. 2021;22:2490. 10.3390/ijms22052490 PubMed DOI PMC
Kreiter J, Škulj S, Brkljača Z, Bardakji S, Vazdar M, Pohl EE. FA sliding as the mechanism for the ANT1‐mediated fatty acid anion transport in lipid bilayers. Int J Mol Sci. 2023b;24:13701. 10.3390/ijms241813701 PubMed DOI PMC
Kreiter J, Tyschuk T, Pohl EE. Uncoupling protein 3 catalyzes the exchange of C4 metabolites similar to UCP2. Biomolecules. 2023a;14:21. 10.3390/biom14010021 PubMed DOI PMC
Kunji ERS, King MS, Ruprecht JJ, Thangaratnarajah C. The SLC25 carrier family: important transport proteins in mitochondrial physiology and pathology. Physiology (Bethesda). 2020;35:302–327. 10.1152/physiol.00009.2020 PubMed DOI PMC
Levy SE, Chen YS, Graham BH, Wallace DC. Expression and sequence analysis of the mouse adenine nucleotide translocase 1 and 2 genes. Gene. 2000;254:57–66. 10.1016/s0378-1119(00)00252-3 PubMed DOI
Lunetti P, Gorgoglione R, Curcio R, Marra F, Pignataro A, Vozza A, et al. Drosophila melanogaster uncoupling protein‐4A (UCP4A) catalyzes a unidirectional transport of aspartate. Int J Mol Sci. 2022;23:1020. 10.3390/ijms23031020 PubMed DOI PMC
Macher G, Koehler M, Rupprecht A, Kreiter J, Hinterdorfer P, Pohl EE. Inhibition of mitochondrial UCP1 and UCP3 by purine nucleotides and phosphate. Biochim Biophys Acta Biomembr. 2018;1860:664–672. 10.1016/j.bbamem.2017.12.001 PubMed DOI PMC
Maes ME, Colombo G, Uiterkamp FES, Sternberg F, Venturino A, Pohl EE, et al. Mitochondrial network adaptations of microglia reveal sex‐specific stress response after injury and UCP2 knockout. iScience. 2023;26(10):107780. 10.1016/j.isci.2023.107780 PubMed DOI PMC
Mavridou V, King MS, Bazzone A, Springett R, Kunji ERS. Membrane potential stimulates ADP import and ATP export by the mitochondrial ADP/ATP carrier due to its positively charged binding site. Sci Adv. 2024;10:eadp7725. 10.1126/sciadv.adp7725 PubMed DOI PMC
Nedergaard J, Cannon B. The “novel” “uncoupling” proteins UCP2 and UCP3: What do they really do? Pros and cons for suggested functions. Exp Physiol. 2003;88:65–84. 10.1113/eph8802502 PubMed DOI
Nedergaard J, Cannon B. Brown adipose tissue as a heat‐producing thermoeffector. Handb Clin Neurol. 2018;156:137–152. 10.1016/B978-0-444-63912-7.00009-6 PubMed DOI
Nicholls DG. Mitochondrial proton leaks and uncoupling proteins. Biochim Biophys Acta Bioenerg. 2021;1862:148428. 10.1016/j.bbabio.2021.148428 PubMed DOI
Nicholls DG. Fifty years on: How we uncovered the unique bioenergetics of brown adipose tissue. Acta Physiol (Oxf). 2023;237:e13938. 10.1111/apha.13938 PubMed DOI
Palmieri F. Mitochondrial transporters of the SLC25 family and associated diseases: a review. J Inherit Metab Dis. 2014;37:565–575. 10.1007/s10545-014-9708-5 PubMed DOI
Palmieri F, Indiveri C, Bisaccia F, Kramer R. Functional properties of purified and reconstituted mitochondrial metabolite carriers. J Bioenerg Biomembr. 1993;25:525–535. 10.1007/BF01108409 PubMed DOI
Pebay‐Peyroula E, Dahout‐Gonzalez C, Kahn R, Trézéguet V, Lauquin GJM, Brandolin G. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature. 2003;426:39–44. 10.1038/nature02056 PubMed DOI
Perry RJ, Zhang D, Zhang XM, Boyer JL, Shulman GI. Controlled‐release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science. 2015;347:1253–1256. 10.1126/science.aaa0672 PubMed DOI PMC
Pfaff E, Klingenberg M, Heldt HW. Unspecific permeation and specific exchange of adenine nucleotides in liver mitochondria. Biochim Biophys Acta. 1965;104:312–315. 10.1016/0304-4165(65)90258-8 PubMed DOI
Pietropaolo A, Pierri CL, Palmieri F, Klingenberg M. The switching mechanism of the mitochondrial ADP/ATP carrier explored by free‐energy landscapes. Biochim Biophys Acta. 2016;1857:772–781. 10.1016/j.bbabio.2016.02.006 PubMed DOI
Pohl EE, Jovanovic O. The role of phosphatidylethanolamine adducts in modification of the activity of membrane proteins under oxidative stress. Molecules. 2019;24:4545. 10.3390/molecules24244545 PubMed DOI PMC
Pohl EE, Peterson U, Sun J, Pohl P. Changes of intrinsic membrane potentials induced by flip‐flop of long‐chain fatty acids. Biochemistry. 2000;39:1834–1839. 10.1021/bi9919549 PubMed DOI
Pohl EE, Rupprecht A, Macher G, Hilse KE. Important trends in UCP3 investigation. Front Physiol. 2019;10:470. 10.3389/fphys.2019.00470 PubMed DOI PMC
Raho S, Capobianco L, Malivindi R, Vozza A, Piazzolla C, de Leonardis F, et al. KRAS‐regulated glutamine metabolism requires UCP2‐mediated aspartate transport to support pancreatic cancer growth. Nat Metab. 2020;2:1373–1381. 10.1038/s42255-020-00315-1 PubMed DOI
Ricquier D. UCP1, the mitochondrial uncoupling protein of brown adipocyte: a personal contribution and a historical perspective. Biochimie. 2017;134:3–8. 10.1016/j.biochi.2016.10.018 PubMed DOI
Roussel D, Chainier F, Rouanet J, Barre H. Increase in the adenine nucleotide translocase content of duckling subsarcolemmal mitochondria during cold acclimation. FEBS Lett. 2000;477:141–144. 10.1016/s0014-5793(00)01790-7 PubMed DOI
Rupprecht A, Bräuer AU, Smorodchenko A, Goyn J, Hilse KE, Shabalina IG, et al. Quantification of uncoupling protein 2 reveals its main expression in immune cells and selective up‐regulation during T‐cell proliferation. PLoS One. 2012;7:e41406. 10.1371/journal.pone.0041406 PubMed DOI PMC
Rupprecht A, Sokolenko EA, Beck V, Ninnemann O, Jaburek M, Trimbuch T, et al. Role of the transmembrane potential in the membrane proton leak. Biophys J. 2010;98:1503–1511. 10.1016/j.bpj.2009.12.4301 PubMed DOI PMC
Ruprecht JJ, King MS, Zögg T, Aleksandrova AA, Pardon E, Crichton PG, et al. The molecular mechanism of transport by the mitochondrial ADP/ATP carrier. Cell. 2019;176:435–447.e15. 10.1016/j.cell.2018.11.025 PubMed DOI PMC
Ruprecht JJ, Kunji ER. Structural changes in the transport cycle of the mitochondrial ADP/ATP carrier. Curr Opin Struct Biol. 2019;57:135–144. 10.1016/j.sbi.2019.03.029 PubMed DOI PMC
Ruprecht JJ, Kunji ERS. Structural mechanism of transport of mitochondrial carriers. Annu Rev Biochem. 2021;90:535–558. 10.1146/annurev-biochem-072820-020508 PubMed DOI
Samartsev VN, Marchik EI, Shamagulova LV. Free fatty acids as inducers and regulators of uncoupling of oxidative phosphorylation in liver mitochondria with participation of ADP/ATP‐ and aspartate/glutamate‐antiporter. Biochemistry (Mosc). 2011;76:217–224. 10.1134/s0006297911020088 PubMed DOI
Samartsev VN, Smirnov AV, Zeldi IP, Markova OV, Mokhova EN, Skulachev VP. Involvement of aspartate/glutamate antiporter in fatty acid‐induced uncoupling of liver mitochondria. Biochim Biophys Acta. 1997;1319:251–257. 10.1016/s0005-2728(96)00166-1 PubMed DOI
Shabalina IG, Kramarova TV, Nedergaard J, Cannon B. Carboxyatractyloside effects on brown‐fat mitochondria imply that the adenine nucleotide translocator isoforms ANT1 and ANT2 may be responsible for basal and fatty‐acid‐induced uncoupling respectively. Biochem J. 2006;399:405–414. 10.1042/Bj20060706 PubMed DOI PMC
Skulachev VP. Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett. 1991;294:158–162. 10.1016/0014-5793(91)80658-p PubMed DOI
Skulj S, Brkljaca Z, Kreiter J, Pohl EE, Vazdar M. Molecular dynamics simulations of mitochondrial uncoupling protein 2. Int J Mol Sci. 2021;22:1214. 10.3390/ijms22031214 PubMed DOI PMC
Škulj S, Brkljača Z, Vazdar M. Molecular dynamics simulations of the elusive matrix‐open state of mitochondrial ADP/ATP carrier. Israel J Chem. 2020;60:735–743. 10.1002/ijch.202000011 DOI
Skulj S, Vazdar M. Calculation of apparent pKa values of saturated fatty acids with different lengths in DOPC phospholipid bilayers. Phys Chem Chem Phys. 2019;21:10052–10060. 10.1039/c9cp01204d PubMed DOI
Smorodchenko A, Schneider S, Rupprecht A, Hilse K, Sasgary S, Zeitz U, et al. UCP2 up‐regulation within the course of autoimmune encephalomyelitis correlates with T‐lymphocyte activation. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1002–1012. 10.1016/j.bbadis.2017.01.019 PubMed DOI
Stepien G, Torroni A, Chung AB, Hodge JA, Wallace DC. Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem. 1992;267:14592–14597. PubMed
Talbot DA, Duchamp C, Rey B, Hanuise N, Rouanet JL, Sibille B, et al. Uncoupling protein and ATP/ADP carrier increase mitochondrial proton conductance after cold adaptation of king penguins. J Physiol. 2004;558:123–135. 10.1113/jphysiol.2004.063768 PubMed DOI PMC
Toyomizu M, Ueda M, Sato S, Seki Y, Sato K, Akiba Y. Cold‐induced mitochondrial uncoupling and expression of chicken UCP and ANT mRNA in chicken skeletal muscle. FEBS Lett. 2002;529:313–318. 10.1016/s0014-5793(02)03395-1 PubMed DOI
Urbankova E, Voltchenko A, Pohl P, Jezek P, Pohl EE. Transport kinetics of uncoupling proteins. Analysis of UCP1 reconstituted in planar lipid bilayers. J Biol Chem. 2003;278:32497–32500. 10.1074/jbc.M303721200 PubMed DOI
Vignais PV. The mitochondrial adenine nucleotide translocator. J Bioenerg. 1976;8:9–17. 10.1007/BF01559386 PubMed DOI
Vozza A, Parisi G, de Leonardis F, Lasorsa FM, Castegna A, Amorese D, et al. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci U S A. 2014;111:960–965. 10.1073/pnas.1317400111 PubMed DOI PMC
Wieckowski MR, Wojtczak L. Involvement of the dicarboxylate carrier in the protonophoric action of long‐chain fatty acids in mitochondria. Biochem Biophys Res Commun. 1997;232:414–417. 10.1006/bbrc.1997.6298 PubMed DOI
Wulf R, Kaltstein A, Klingenberg M. H+ and cation movements associated with ADP, ATP transport in mitochondria. Eur J Biochem. 1978;82:585–592. 10.1111/j.1432-1033.1978.tb12054.x PubMed DOI
Yu XX, Lewin DA, Zhong A, Brush J, Schow PW, Sherwood SW, et al. Overexpression of the human 2‐oxoglutarate carrier lowers mitochondrial membrane potential in HEK‐293 cells: contrast with the unique cold‐induced mitochondrial carrier CGI‐69. Biochem J. 2001;353:369–375. 10.1042/bj3530369 PubMed DOI PMC
Zackova M, Skobisova E, Urbankova E, Jezek P. Activating omega‐6 polyunsaturated fatty acids and inhibitory purine nucleotides are high affinity ligands for novel mitochondrial uncoupling proteins UCP2 and UCP3. J Biol Chem. 2003;278:20761–20769. 10.1074/jbc.M212850200 PubMed DOI
Zuna K, Jovanović O, Khailova LS, Škulj S, Brkljača Z, Kreiter J, et al. Mitochondrial uncoupling proteins (UCP1‐UCP3) and adenine nucleotide translocase (ANT1) enhance the protonophoric action of 2,4‐dinitrophenol in mitochondria and planar bilayer membranes. Biomolecules. 2021;11:1178. 10.3390/biom11081178 PubMed DOI PMC
Zuna K, Tyschuk T, Beikbaghban T, Sternberg F, Kreiter J, Pohl EE. The 2‐oxoglutarate/malate carrier extends the family of mitochondrial carriers capable of fatty acid and 2,4‐dinitrophenol‐activated proton transport. Acta Physiol (Oxf). 2024;240:e14143. 10.1111/apha.14143 PubMed DOI PMC