Membrane Lipid Reshaping Underlies Oxidative Stress Sensing by the Mitochondrial Proteins UCP1 and ANT1
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P 31559
Austrian Science Fund FWF - Austria
IP-2019-04-3804
Croatian Science Foundation
P31559
FWF Austrian Science Fund
PubMed
36552523
PubMed Central
PMC9774536
DOI
10.3390/antiox11122314
PII: antiox11122314
Knihovny.cz E-zdroje
- Klíčová slova
- bending moduli, lateral pressure profile, lipid shape, lipid–protein interaction, mitochondrial membrane protein, protonophoric function, reactive aldehydes, stored curvature elastic stress,
- Publikační typ
- časopisecké články MeSH
Oxidative stress and ROS are important players in the pathogenesis of numerous diseases. In addition to directly altering proteins, ROS also affects lipids with negative intrinsic curvature such as phosphatidylethanolamine (PE), producing PE adducts and lysolipids. The formation of PE adducts potentiates the protonophoric activity of mitochondrial uncoupling proteins, but the molecular mechanism remains unclear. Here, we linked the ROS-mediated change in lipid shape to the mechanical properties of the membrane and the function of uncoupling protein 1 (UCP1) and adenine nucleotide translocase 1 (ANT1). We show that the increase in the protonophoric activity of both proteins occurs due to the decrease in bending modulus in lipid bilayers in the presence of lysophosphatidylcholines (OPC and MPC) and PE adducts. Moreover, MD simulations showed that modified PEs and lysolipids change the lateral pressure profile of the membrane in the same direction and by the similar amplitude, indicating that modified PEs act as lipids with positive intrinsic curvature. Both results indicate that oxidative stress decreases stored curvature elastic stress (SCES) in the lipid bilayer membrane. We demonstrated that UCP1 and ANT1 sense SCES and proposed a novel regulatory mechanism for the function of these proteins. The new findings should draw the attention of the scientific community to this important and unexplored area of redox biochemistry.
A N Frumkin Institute of Physical Chemistry and Electrochemistry 119071 Moscow Russia
Department of Chemistry Faculty of Science University of Zagreb 10000 Zagreb Croatia
Department of Mathematics University of Chemistry and Technology 16628 Prague Czech Republic
Federal Research and Clinical Center of Physical Chemical Medicine 119435 Moscow Russia
Scientific Research Institute of System Biology and Medicine 117246 Moscow Russia
Zobrazit více v PubMed
Harayama T., Riezman H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018;19:281–296. doi: 10.1038/nrm.2017.138. PubMed DOI
Lamari F., Mochel F., Sedel F., Saudubray J.M. Disorders of phospholipids, sphingolipids and fatty acids biosynthesis: Toward a new category of inherited metabolic diseases. J. Inherit. Metab. Dis. 2013;36:411–425. doi: 10.1007/s10545-012-9509-7. PubMed DOI
Jo D.S., Park N.Y., Cho D.H. Peroxisome quality control and dysregulated lipid metabolism in neurodegenerative diseases. Exp. Mol. Med. 2020;52:1486–1495. doi: 10.1038/s12276-020-00503-9. PubMed DOI PMC
Sam P.N., Calzada E., Acoba M.G., Zhao T., Watanabe Y., Nejatfard A., Trinidad J.C., Shutt T.E., Neal S.E., Claypool S.M. Impaired phosphatidylethanolamine metabolism activates a reversible stress response that detects and resolves mutant mitochondrial precursors. iScience. 2021;24:102196. doi: 10.1016/j.isci.2021.102196. PubMed DOI PMC
Eckmann J., Eckert S.H., Leuner K., Muller W.E., Eckert G.P. Mitochondria: Mitochondrial membranes in brain ageing and neurodegeneration. Int. J. Biochem. Cell Biol. 2013;45:76–80. doi: 10.1016/j.biocel.2012.06.009. PubMed DOI
Kozlov M.M. Spontaneous and Intrinsic Curvature of Lipid Membranes: Back to the Origins. In: Bassereau P., Sens P., editors. Physics of Biological Membranes. Springer International Publishing; Berlin/Heidelberg, Germany: 2018. pp. 287–309.
Helfrich W. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Nat. C. 1973;28:693–703. doi: 10.1515/znc-1973-11-1209. PubMed DOI
Dymond M.K. Lipid monolayer spontaneous curvatures: A collection of published values. Chem. Phys. Lipids. 2021;239:105117. doi: 10.1016/j.chemphyslip.2021.105117. PubMed DOI
van Meer G., Voelker D.R., Feigenson G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008;9:112–124. doi: 10.1038/nrm2330. PubMed DOI PMC
Vance J.E., Tasseva G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim. Biophys. Acta. 2013;1831:543–554. doi: 10.1016/j.bbalip.2012.08.016. PubMed DOI
Marsh D. Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys. J. 2007;93:3884–3899. doi: 10.1529/biophysj.107.107938. PubMed DOI PMC
Bochicchio D., Monticelli L. The Membrane Bending Modulus in Experiments and Simulations. In: Iglič A., Kulkarni C.V., Rappolt M., editors. Advances in Biomembranes and Lipid Self-Assembly. Volume 23. Academic Press; Cambridge, MA, USA: 2016. pp. 117–143.
van den Brink-van der Laan E., Killian J.A., de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim. Biophys. Acta. 2004;1666:275–288. doi: 10.1016/j.bbamem.2004.06.010. PubMed DOI
Kirsten M.L., Baron R.A., Seabra M.C., Ces O. Rab1a and Rab5a preferentially bind to binary lipid compositions with higher stored curvature elastic energy. Mol. Membr. Biol. 2013;30:303–314. doi: 10.3109/09687688.2013.818725. PubMed DOI
Cullis P.R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta. 1979;559:399–420. doi: 10.1016/0304-4157(79)90012-1. PubMed DOI
Tuck S. Extracellular vesicles: Budding regulated by a phosphatidylethanolamine translocase. Curr. Biol. 2011;21:R988-990. doi: 10.1016/j.cub.2011.11.009. PubMed DOI
Verkleij A.J., Leunissen-Bijvelt J., de Kruijff B., Hope M., Cullis P.R. Non-bilayer structures in membrane fusion. Ciba Found. Symp. 1984;103:45–59. doi: 10.1002/9780470720844.ch4. PubMed DOI
Siegel D.P., Epand R.M. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: Implications for membrane fusion mechanisms. Biophys. J. 1997;73:3089–3111. doi: 10.1016/S0006-3495(97)78336-X. PubMed DOI PMC
McDonald C., Jovanovic G., Ces O., Buck M. Membrane Stored Curvature Elastic Stress Modulates Recruitment of Maintenance Proteins PspA and Vipp1. mBio. 2015;6:e01188-15. doi: 10.1128/mBio.01188-15. PubMed DOI PMC
Agrawal H., Liu L., Sharma P. Revisiting the curvature-mediated interactions between proteins in biological membranes. Soft Matter. 2016;12:8907–8918. doi: 10.1039/C6SM01572G. PubMed DOI
Strandberg E., Tiltak D., Ehni S., Wadhwani P., Ulrich A.S. Lipid shape is a key factor for membrane interactions of amphipathic helical peptides. Biochim. Biophys. Acta. 2012;1818:1764–1776. doi: 10.1016/j.bbamem.2012.02.027. PubMed DOI
Nath S., Dancourt J., Shteyn V., Puente G., Fong W.M., Nag S., Bewersdorf J., Yamamoto A., Antonny B., Melia T.J. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat. Cell Biol. 2014;16:415–424. doi: 10.1038/ncb2940. PubMed DOI PMC
Putta P., Rankenberg J., Korver R.A., van Wijk R., Munnik T., Testerink C., Kooijman E.E. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties. Biochim. Biophys. Acta. 2016;1858:2709–2716. doi: 10.1016/j.bbamem.2016.07.014. PubMed DOI
Strahl H., Ronneau S., Gonzalez B.S., Klutsch D., Schaffner-Barbero C., Hamoen L.W. Transmembrane protein sorting driven by membrane curvature. Nat. Commun. 2015;6:8728. doi: 10.1038/ncomms9728. PubMed DOI PMC
Daum G., Vance J.E. Import of lipids into mitochondria. Prog. Lipid Res. 1997;36:103–130. doi: 10.1016/S0163-7827(97)00006-4. PubMed DOI
Mejia E.M., Hatch G.M. Mitochondrial phospholipids: Role in mitochondrial function. J. Bioenerg. Biomembr. 2016;48:99–112. doi: 10.1007/s10863-015-9601-4. PubMed DOI
Basu Ball W., Neff J.K., Gohil V.M. The role of nonbilayer phospholipids in mitochondrial structure and function. FEBS Lett. 2018;592:1273–1290. doi: 10.1002/1873-3468.12887. PubMed DOI PMC
Bottinger L., Horvath S.E., Kleinschroth T., Hunte C., Daum G., Pfanner N., Becker T. Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. J. Mol. Biol. 2012;423:677–686. doi: 10.1016/j.jmb.2012.09.001. PubMed DOI PMC
Baker C.D., Basu Ball W., Pryce E.N., Gohil V.M. Specific requirements of nonbilayer phospholipids in mitochondrial respiratory chain function and formation. Mol. Biol. Cell. 2016;27:2161–2171. doi: 10.1091/mbc.E15-12-0865. PubMed DOI PMC
Calzada E., Avery E., Sam P.N., Modak A., Wang C., McCaffery J.M., Han X., Alder N.N., Claypool S.M. Phosphatidylethanolamine made in the inner mitochondrial membrane is essential for yeast cytochrome bc1 complex function. Nat. Commun. 2019;10:1432. doi: 10.1038/s41467-019-09425-1. PubMed DOI PMC
Cooke I.R., Deserno M. Coupling between lipid shape and membrane curvature. Biophys. J. 2006;91:487–495. doi: 10.1529/biophysj.105.078683. PubMed DOI PMC
Bashkirov P.V., Chekashkina K.V., Akimov S.A., Kuzmin P.I., Frolov V.A. Variation of Lipid Membrane Composition Caused by Strong Bending. Biochem. Mosc. Suppl. Ser. A Membr. Cell Biol. 2011;28:145–152. doi: 10.1134/S199074781101003X. DOI
Beltran-Heredia E., Tsai F.C., Salinas-Almaguer S., Cao F.J., Bassereau P., Monroy F. Membrane curvature induces cardiolipin sorting. Commun. Biol. 2019;2:225. doi: 10.1038/s42003-019-0471-x. PubMed DOI PMC
Elias-Wolff F., Linden M., Lyubartsev A.P., Brandt E.G. Curvature sensing by cardiolipin in simulated buckled membranes. Soft Matter. 2019;15:792–802. doi: 10.1039/C8SM02133C. PubMed DOI
Davies K.M., Strauss M., Daum B., Kief J.H., Osiewacz H.D., Rycovska A., Zickermann V., Kuhlbrandt W. Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc. Natl. Acad. Sci. USA. 2011;108:14121–14126. doi: 10.1073/pnas.1103621108. PubMed DOI PMC
Acehan D., Malhotra A., Xu Y., Ren M., Stokes D.L., Schlame M. Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophys. J. 2011;100:2184–2192. doi: 10.1016/j.bpj.2011.03.031. PubMed DOI PMC
Jovanovic O., Pashkovskaya A.A., Annibal A., Vazdar M., Burchardt N., Sansone A., Gille L., Fedorova M., Ferreri C., Pohl E.E. The molecular mechanism behind reactive aldehyde action on transmembrane translocations of proton and potassium ions. Free Radic. Biol. Med. 2015;89:1067–1076. doi: 10.1016/j.freeradbiomed.2015.10.422. PubMed DOI PMC
Guichardant M., Taibi-Tronche P., Fay L.B., Lagarde M. Covalent modifications of aminophospholipids by 4-hydroxynonenal. Free Radic. Biol. Med. 1998;25:1049–1056. doi: 10.1016/S0891-5849(98)00149-X. PubMed DOI
Bacot S., Bernoud-Hubac N., Baddas N., Chantegrel B., Deshayes C., Doutheau A., Lagarde M., Guichardant M. Covalent binding of hydroxy-alkenals 4-HDDE, 4-HHE, and 4-HNE to ethanolamine phospholipid subclasses. J. Lipid Res. 2003;44:917–926. doi: 10.1194/jlr.M200450-JLR200. PubMed DOI
Vazdar K., Vojta D., Margetic D., Vazdar M. Reaction Mechanism of Covalent Modification of Phosphatidylethanolamine Lipids by Reactive Aldehydes 4-Hydroxy-2-nonenal and 4-Oxo-2-nonenal. Chem. Res. Toxicol. 2017;30:840–850. doi: 10.1021/acs.chemrestox.6b00443. PubMed DOI
Jovanovic O., Skulj S., Pohl E.E., Vazdar M. Covalent modification of phosphatidylethanolamine by 4-hydroxy-2-nonenal increases sodium permeability across phospholipid bilayer membranes. Free Radic. Biol. Med. 2019;143:433–440. doi: 10.1016/j.freeradbiomed.2019.08.027. PubMed DOI PMC
Jezek J., Jaburek M., Zelenka J., Jezek P. Mitochondrial phospholipase A2 activated by reactive oxygen species in heart mitochondria induces mild uncoupling. Physiol. Res. 2010;59:737–747. doi: 10.33549/physiolres.931905. PubMed DOI
Jaburek M., Pruchova P., Holendova B., Galkin A., Jezek P. Antioxidant Synergy of Mitochondrial Phospholipase PNPLA8/iPLA2gamma with Fatty Acid-Conducting SLC25 Gene Family Transporters. Antioxidants. 2021;10:678. doi: 10.3390/antiox10050678. PubMed DOI PMC
Bashkirov P.V., Kuzmin P.I., Vera Lillo J., Frolov V.A. Molecular Shape Solution for Mesoscopic Remodeling of Cellular Membranes. Annu. Rev. Biophys. 2022;51:473–497. doi: 10.1146/annurev-biophys-011422-100054. PubMed DOI PMC
Zimmermann L., Moldzio R., Vazdar K., Krewenka C., Pohl E.E. Nutrient deprivation in neuroblastoma cells alters 4-hydroxynonenal-induced stress response. Oncotarget. 2017;8:8173–8188. doi: 10.18632/oncotarget.14132. PubMed DOI PMC
Macher G., Koehler M., Rupprecht A., Kreiter J., Hinterdorfer P., Pohl E.E. Inhibition of mitochondrial UCP1 and UCP3 by purine nucleotides and phosphate. Biochim. Biophys. Acta Biomembr. 2018;1860:664–672. doi: 10.1016/j.bbamem.2017.12.001. PubMed DOI PMC
Kreiter J., Beitz E., Pohl E.E. A Fluorescence-Based Method to Measure ADP/ATP Exchange of Recombinant Adenine Nucleotide Translocase in Liposomes. Biomolecules. 2020;10:685. doi: 10.3390/biom10050685. PubMed DOI PMC
Beck V., Jaburek M., Breen E.P., Porter R.K., Jezek P., Pohl E.E. A new automated technique for the reconstitution of hydrophobic proteins into planar bilayer membranes. Studies of human recombinant uncoupling protein 1. Biochim. Biophys. Acta. 2006;1757:474–479. doi: 10.1016/j.bbabio.2006.03.006. PubMed DOI
Rupprecht A., Sokolenko E.A., Beck V., Ninnemann O., Jaburek M., Trimbuch T., Klishin S.S., Jezek P., Skulachev V.P., Pohl E.E. Role of the transmembrane potential in the membrane proton leak. Biophys. J. 2010;98:1503–1511. doi: 10.1016/j.bpj.2009.12.4301. PubMed DOI PMC
Bashkirov P.V., Kuzmin P.I., Chekashkina K., Arrasate P., Vera Lillo J., Shnyrova A.V., Frolov V.A. Reconstitution and real-time quantification of membrane remodeling by single proteins and protein complexes. Nat. Protoc. 2020;15:2443–2469. doi: 10.1038/s41596-020-0337-1. PubMed DOI PMC
Frolov V.A., Lizunov V.A., Dunina-Barkovskaya A.Y., Samsonov A.V., Zimmerberg J. Shape bistability of a membrane neck: A toggle switch to control vesicle content release. Proc. Natl. Acad. Sci. USA. 2003;100:8698–8703. doi: 10.1073/pnas.1432962100. PubMed DOI PMC
Ivchenkov D.V., Kuzmin P.I., Galimzyanov T.R., Shnyrova A.V., Bashkirov P.V., Frolov V.A. Nonlinear material and ionic transport through membrane nanotubes. Biochim. Biophys. Acta Biomembr. 2021;1863:183677. doi: 10.1016/j.bbamem.2021.183677. PubMed DOI PMC
Galimzyanov T.R., Bashkirov P.V., Blank P.S., Zimmerberg J., Batishchev O.V., Akimov S.A. Monolayerwise application of linear elasticity theory well describes strongly deformed lipid membranes and the effect of solvent. Soft Matter. 2020;16:1179–1189. doi: 10.1039/C9SM02079A. PubMed DOI
Jaembeck J.P., Lyubartsev A.P. An extension and further validation of an all-atomistic force field for biological membranes. J. Chem. Theory Comput. 2012;8:2938–2948. doi: 10.1021/ct300342n. PubMed DOI
Jaembeck J.P., Lyubartsev A.P. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B. 2012;116:3164–3179. doi: 10.1021/jp212503e. PubMed DOI PMC
Jaembeck J.P.M., Lyubartsev A.P. Another piece of the membrane puzzle: Extending slipids further. J. Chem. Theory Comput. 2012;9:774–784. doi: 10.1021/ct300777p. PubMed DOI
Klauda J.B., Venable R.M., Freites J.A., O’Connor J.W., Tobias D.J., Mondragon-Ramirez C., Vorobyov I., MacKerell A.D., Jr., Pastor R.W. Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types. J. Phys. Chem. B. 2010;114:7830–7843. doi: 10.1021/jp101759q. PubMed DOI PMC
Singh U.C., Kollman P.A. An Approach to Computing Electrostatic Charges for Molecules. J. Comput. Chem. 1984;5:129–145. doi: 10.1002/jcc.540050204. DOI
Bayly C.I., Cieplak P., Cornell W.D., Kollman P.A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges-the Resp Model. J. Phys. Chem. 1993;97:10269–10280. doi: 10.1021/j100142a004. DOI
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI
Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Parrinello M., Rahman A. Polymorphic Transitions in Single-Crystals-a New Molecular-Dynamics Method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI
Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984;52:255–268. doi: 10.1080/00268978400101201. DOI
Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI
Miyamoto S., Kollman P.A. Settle-an Analytical Version of the Shake and Rattle Algorithm for Rigid Water Models. J. Comput. Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI
Vanegas J.M., Torres-Sanchez A., Arroyo M. Importance of Force Decomposition for Local Stress Calculations in Biomembrane Molecular Simulations. J. Chem. Theory Comput. 2014;10:691–702. doi: 10.1021/ct4008926. PubMed DOI
Torres-Sanchez A., Vanegas J.M., Arroyo M. Examining the Mechanical Equilibrium of Microscopic Stresses in Molecular Simulations. Phys. Rev. Lett. 2015;114:258102. doi: 10.1103/PhysRevLett.114.258102. PubMed DOI
Shi Z., Baumgart T. Membrane tension and peripheral protein density mediate membrane shape transitions. Nat. Commun. 2015;6:5974. doi: 10.1038/ncomms6974. PubMed DOI PMC
Sorre B., Callan-Jones A., Manzi J., Goud B., Prost J., Bassereau P., Roux A. Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc. Natl. Acad. Sci. USA. 2012;109:173–178. doi: 10.1073/pnas.1103594108. PubMed DOI PMC
Fuller N., Rand R.P. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J. 2001;81:243–254. doi: 10.1016/S0006-3495(01)75695-0. PubMed DOI PMC
Esterbauer H., Schaur R.J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991;11:81–128. doi: 10.1016/0891-5849(91)90192-6. PubMed DOI
Uchida K. 4-Hydroxy-2-nonenal: A product and mediator of oxidative stress. Prog. Lipid Res. 2003;42:318–343. doi: 10.1016/S0163-7827(03)00014-6. PubMed DOI
Andreyev A., Bondareva T.O., Dedukhova V.I., Mokhova E.N., Skulachev V.P., Tsofina L.M., Volkov N.I., Vygodina T.V. The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria. Eur. J. Biochem. 1989;182:585–592. doi: 10.1111/j.1432-1033.1989.tb14867.x. PubMed DOI
Kreiter J., Rupprecht A., Skulj S., Brkljaca Z., Zuna K., Knyazev D.G., Bardakji S., Vazdar M., Pohl E.E. ANT1 Activation and Inhibition Patterns Support the Fatty Acid Cycling Mechanism for Proton Transport. Int. J. Mol. Sci. 2021;22:2490. doi: 10.3390/ijms22052490. PubMed DOI PMC
Malingriaux E.A., Rupprecht A., Gille L., Jovanovic O., Jezek P., Jaburek M., Pohl E.E. Fatty acids are key in 4-hydroxy-2-nonenal-mediated activation of uncoupling proteins 1 and 2. PLoS ONE. 2013;8:e77786. doi: 10.1371/journal.pone.0077786. PubMed DOI PMC
Garlid K.D., Orosz D.E., Modriansky M., Vassanelli S., Jezek P. On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J. Biol. Chem. 1996;271:2615–2620. doi: 10.1074/jbc.271.5.2615. PubMed DOI
Dennis E.A. Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem. 1994;269:13057–13060. doi: 10.1016/S0021-9258(17)36794-7. PubMed DOI
Chen Y.F., Tsang K.Y., Chang W.F., Fan Z.A. Differential dependencies on [Ca2+] and temperature of the monolayer spontaneous curvatures of DOPE, DOPA and cardiolipin: Effects of modulating the strength of the inter-headgroup repulsion. Soft Matter. 2015;11:4041–4053. doi: 10.1039/C5SM00577A. PubMed DOI
Zoni V., Khaddaj R., Campomanes P., Thiam A.R., Schneiter R., Vanni S. Pre-existing bilayer stresses modulate triglyceride accumulation in the ER versus lipid droplets. Elife. 2021;10:e62886. doi: 10.7554/eLife.62886. PubMed DOI PMC
Renne M.F., Bao X., Hokken M.W., Bierhuizen A.S., Hermansson M., Sprenger R.R., Ewing T.A., Ma X., Cox R.C., Brouwers J.F., et al. Molecular species selectivity of lipid transport creates a mitochondrial sink for di-unsaturated phospholipids. EMBO J. 2022;41:e106837. doi: 10.15252/embj.2020106837. PubMed DOI PMC
Orsi M., Essex J.W. Physical properties of mixed bilayers containing lamellar and nonlamellar lipids: Insights from coarse-grain molecular dynamics simulations. Faraday Discuss. 2013;161:249–272; discussion 273–303. doi: 10.1039/C2FD20110K. discussion 273–303. PubMed DOI
Kreiter J., Brkljača Z., Škulj S., Bardakji S., Vazdar M., Pohl E.E. Mechanism of the ANT-mediated transport of fatty acid anions across the inner mitochondrial membrane. bioRxiv. 2022 doi: 10.1101/2022.06.27.497434. DOI