Membrane Lipid Reshaping Underlies Oxidative Stress Sensing by the Mitochondrial Proteins UCP1 and ANT1

. 2022 Nov 23 ; 11 (12) : . [epub] 20221123

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36552523

Grantová podpora
P 31559 Austrian Science Fund FWF - Austria
IP-2019-04-3804 Croatian Science Foundation
P31559 FWF Austrian Science Fund

Oxidative stress and ROS are important players in the pathogenesis of numerous diseases. In addition to directly altering proteins, ROS also affects lipids with negative intrinsic curvature such as phosphatidylethanolamine (PE), producing PE adducts and lysolipids. The formation of PE adducts potentiates the protonophoric activity of mitochondrial uncoupling proteins, but the molecular mechanism remains unclear. Here, we linked the ROS-mediated change in lipid shape to the mechanical properties of the membrane and the function of uncoupling protein 1 (UCP1) and adenine nucleotide translocase 1 (ANT1). We show that the increase in the protonophoric activity of both proteins occurs due to the decrease in bending modulus in lipid bilayers in the presence of lysophosphatidylcholines (OPC and MPC) and PE adducts. Moreover, MD simulations showed that modified PEs and lysolipids change the lateral pressure profile of the membrane in the same direction and by the similar amplitude, indicating that modified PEs act as lipids with positive intrinsic curvature. Both results indicate that oxidative stress decreases stored curvature elastic stress (SCES) in the lipid bilayer membrane. We demonstrated that UCP1 and ANT1 sense SCES and proposed a novel regulatory mechanism for the function of these proteins. The new findings should draw the attention of the scientific community to this important and unexplored area of redox biochemistry.

Zobrazit více v PubMed

Harayama T., Riezman H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018;19:281–296. doi: 10.1038/nrm.2017.138. PubMed DOI

Lamari F., Mochel F., Sedel F., Saudubray J.M. Disorders of phospholipids, sphingolipids and fatty acids biosynthesis: Toward a new category of inherited metabolic diseases. J. Inherit. Metab. Dis. 2013;36:411–425. doi: 10.1007/s10545-012-9509-7. PubMed DOI

Jo D.S., Park N.Y., Cho D.H. Peroxisome quality control and dysregulated lipid metabolism in neurodegenerative diseases. Exp. Mol. Med. 2020;52:1486–1495. doi: 10.1038/s12276-020-00503-9. PubMed DOI PMC

Sam P.N., Calzada E., Acoba M.G., Zhao T., Watanabe Y., Nejatfard A., Trinidad J.C., Shutt T.E., Neal S.E., Claypool S.M. Impaired phosphatidylethanolamine metabolism activates a reversible stress response that detects and resolves mutant mitochondrial precursors. iScience. 2021;24:102196. doi: 10.1016/j.isci.2021.102196. PubMed DOI PMC

Eckmann J., Eckert S.H., Leuner K., Muller W.E., Eckert G.P. Mitochondria: Mitochondrial membranes in brain ageing and neurodegeneration. Int. J. Biochem. Cell Biol. 2013;45:76–80. doi: 10.1016/j.biocel.2012.06.009. PubMed DOI

Kozlov M.M. Spontaneous and Intrinsic Curvature of Lipid Membranes: Back to the Origins. In: Bassereau P., Sens P., editors. Physics of Biological Membranes. Springer International Publishing; Berlin/Heidelberg, Germany: 2018. pp. 287–309.

Helfrich W. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Nat. C. 1973;28:693–703. doi: 10.1515/znc-1973-11-1209. PubMed DOI

Dymond M.K. Lipid monolayer spontaneous curvatures: A collection of published values. Chem. Phys. Lipids. 2021;239:105117. doi: 10.1016/j.chemphyslip.2021.105117. PubMed DOI

van Meer G., Voelker D.R., Feigenson G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008;9:112–124. doi: 10.1038/nrm2330. PubMed DOI PMC

Vance J.E., Tasseva G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim. Biophys. Acta. 2013;1831:543–554. doi: 10.1016/j.bbalip.2012.08.016. PubMed DOI

Marsh D. Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys. J. 2007;93:3884–3899. doi: 10.1529/biophysj.107.107938. PubMed DOI PMC

Bochicchio D., Monticelli L. The Membrane Bending Modulus in Experiments and Simulations. In: Iglič A., Kulkarni C.V., Rappolt M., editors. Advances in Biomembranes and Lipid Self-Assembly. Volume 23. Academic Press; Cambridge, MA, USA: 2016. pp. 117–143.

van den Brink-van der Laan E., Killian J.A., de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim. Biophys. Acta. 2004;1666:275–288. doi: 10.1016/j.bbamem.2004.06.010. PubMed DOI

Kirsten M.L., Baron R.A., Seabra M.C., Ces O. Rab1a and Rab5a preferentially bind to binary lipid compositions with higher stored curvature elastic energy. Mol. Membr. Biol. 2013;30:303–314. doi: 10.3109/09687688.2013.818725. PubMed DOI

Cullis P.R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta. 1979;559:399–420. doi: 10.1016/0304-4157(79)90012-1. PubMed DOI

Tuck S. Extracellular vesicles: Budding regulated by a phosphatidylethanolamine translocase. Curr. Biol. 2011;21:R988-990. doi: 10.1016/j.cub.2011.11.009. PubMed DOI

Verkleij A.J., Leunissen-Bijvelt J., de Kruijff B., Hope M., Cullis P.R. Non-bilayer structures in membrane fusion. Ciba Found. Symp. 1984;103:45–59. doi: 10.1002/9780470720844.ch4. PubMed DOI

Siegel D.P., Epand R.M. The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: Implications for membrane fusion mechanisms. Biophys. J. 1997;73:3089–3111. doi: 10.1016/S0006-3495(97)78336-X. PubMed DOI PMC

McDonald C., Jovanovic G., Ces O., Buck M. Membrane Stored Curvature Elastic Stress Modulates Recruitment of Maintenance Proteins PspA and Vipp1. mBio. 2015;6:e01188-15. doi: 10.1128/mBio.01188-15. PubMed DOI PMC

Agrawal H., Liu L., Sharma P. Revisiting the curvature-mediated interactions between proteins in biological membranes. Soft Matter. 2016;12:8907–8918. doi: 10.1039/C6SM01572G. PubMed DOI

Strandberg E., Tiltak D., Ehni S., Wadhwani P., Ulrich A.S. Lipid shape is a key factor for membrane interactions of amphipathic helical peptides. Biochim. Biophys. Acta. 2012;1818:1764–1776. doi: 10.1016/j.bbamem.2012.02.027. PubMed DOI

Nath S., Dancourt J., Shteyn V., Puente G., Fong W.M., Nag S., Bewersdorf J., Yamamoto A., Antonny B., Melia T.J. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat. Cell Biol. 2014;16:415–424. doi: 10.1038/ncb2940. PubMed DOI PMC

Putta P., Rankenberg J., Korver R.A., van Wijk R., Munnik T., Testerink C., Kooijman E.E. Phosphatidic acid binding proteins display differential binding as a function of membrane curvature stress and chemical properties. Biochim. Biophys. Acta. 2016;1858:2709–2716. doi: 10.1016/j.bbamem.2016.07.014. PubMed DOI

Strahl H., Ronneau S., Gonzalez B.S., Klutsch D., Schaffner-Barbero C., Hamoen L.W. Transmembrane protein sorting driven by membrane curvature. Nat. Commun. 2015;6:8728. doi: 10.1038/ncomms9728. PubMed DOI PMC

Daum G., Vance J.E. Import of lipids into mitochondria. Prog. Lipid Res. 1997;36:103–130. doi: 10.1016/S0163-7827(97)00006-4. PubMed DOI

Mejia E.M., Hatch G.M. Mitochondrial phospholipids: Role in mitochondrial function. J. Bioenerg. Biomembr. 2016;48:99–112. doi: 10.1007/s10863-015-9601-4. PubMed DOI

Basu Ball W., Neff J.K., Gohil V.M. The role of nonbilayer phospholipids in mitochondrial structure and function. FEBS Lett. 2018;592:1273–1290. doi: 10.1002/1873-3468.12887. PubMed DOI PMC

Bottinger L., Horvath S.E., Kleinschroth T., Hunte C., Daum G., Pfanner N., Becker T. Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. J. Mol. Biol. 2012;423:677–686. doi: 10.1016/j.jmb.2012.09.001. PubMed DOI PMC

Baker C.D., Basu Ball W., Pryce E.N., Gohil V.M. Specific requirements of nonbilayer phospholipids in mitochondrial respiratory chain function and formation. Mol. Biol. Cell. 2016;27:2161–2171. doi: 10.1091/mbc.E15-12-0865. PubMed DOI PMC

Calzada E., Avery E., Sam P.N., Modak A., Wang C., McCaffery J.M., Han X., Alder N.N., Claypool S.M. Phosphatidylethanolamine made in the inner mitochondrial membrane is essential for yeast cytochrome bc1 complex function. Nat. Commun. 2019;10:1432. doi: 10.1038/s41467-019-09425-1. PubMed DOI PMC

Cooke I.R., Deserno M. Coupling between lipid shape and membrane curvature. Biophys. J. 2006;91:487–495. doi: 10.1529/biophysj.105.078683. PubMed DOI PMC

Bashkirov P.V., Chekashkina K.V., Akimov S.A., Kuzmin P.I., Frolov V.A. Variation of Lipid Membrane Composition Caused by Strong Bending. Biochem. Mosc. Suppl. Ser. A Membr. Cell Biol. 2011;28:145–152. doi: 10.1134/S199074781101003X. DOI

Beltran-Heredia E., Tsai F.C., Salinas-Almaguer S., Cao F.J., Bassereau P., Monroy F. Membrane curvature induces cardiolipin sorting. Commun. Biol. 2019;2:225. doi: 10.1038/s42003-019-0471-x. PubMed DOI PMC

Elias-Wolff F., Linden M., Lyubartsev A.P., Brandt E.G. Curvature sensing by cardiolipin in simulated buckled membranes. Soft Matter. 2019;15:792–802. doi: 10.1039/C8SM02133C. PubMed DOI

Davies K.M., Strauss M., Daum B., Kief J.H., Osiewacz H.D., Rycovska A., Zickermann V., Kuhlbrandt W. Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc. Natl. Acad. Sci. USA. 2011;108:14121–14126. doi: 10.1073/pnas.1103621108. PubMed DOI PMC

Acehan D., Malhotra A., Xu Y., Ren M., Stokes D.L., Schlame M. Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophys. J. 2011;100:2184–2192. doi: 10.1016/j.bpj.2011.03.031. PubMed DOI PMC

Jovanovic O., Pashkovskaya A.A., Annibal A., Vazdar M., Burchardt N., Sansone A., Gille L., Fedorova M., Ferreri C., Pohl E.E. The molecular mechanism behind reactive aldehyde action on transmembrane translocations of proton and potassium ions. Free Radic. Biol. Med. 2015;89:1067–1076. doi: 10.1016/j.freeradbiomed.2015.10.422. PubMed DOI PMC

Guichardant M., Taibi-Tronche P., Fay L.B., Lagarde M. Covalent modifications of aminophospholipids by 4-hydroxynonenal. Free Radic. Biol. Med. 1998;25:1049–1056. doi: 10.1016/S0891-5849(98)00149-X. PubMed DOI

Bacot S., Bernoud-Hubac N., Baddas N., Chantegrel B., Deshayes C., Doutheau A., Lagarde M., Guichardant M. Covalent binding of hydroxy-alkenals 4-HDDE, 4-HHE, and 4-HNE to ethanolamine phospholipid subclasses. J. Lipid Res. 2003;44:917–926. doi: 10.1194/jlr.M200450-JLR200. PubMed DOI

Vazdar K., Vojta D., Margetic D., Vazdar M. Reaction Mechanism of Covalent Modification of Phosphatidylethanolamine Lipids by Reactive Aldehydes 4-Hydroxy-2-nonenal and 4-Oxo-2-nonenal. Chem. Res. Toxicol. 2017;30:840–850. doi: 10.1021/acs.chemrestox.6b00443. PubMed DOI

Jovanovic O., Skulj S., Pohl E.E., Vazdar M. Covalent modification of phosphatidylethanolamine by 4-hydroxy-2-nonenal increases sodium permeability across phospholipid bilayer membranes. Free Radic. Biol. Med. 2019;143:433–440. doi: 10.1016/j.freeradbiomed.2019.08.027. PubMed DOI PMC

Jezek J., Jaburek M., Zelenka J., Jezek P. Mitochondrial phospholipase A2 activated by reactive oxygen species in heart mitochondria induces mild uncoupling. Physiol. Res. 2010;59:737–747. doi: 10.33549/physiolres.931905. PubMed DOI

Jaburek M., Pruchova P., Holendova B., Galkin A., Jezek P. Antioxidant Synergy of Mitochondrial Phospholipase PNPLA8/iPLA2gamma with Fatty Acid-Conducting SLC25 Gene Family Transporters. Antioxidants. 2021;10:678. doi: 10.3390/antiox10050678. PubMed DOI PMC

Bashkirov P.V., Kuzmin P.I., Vera Lillo J., Frolov V.A. Molecular Shape Solution for Mesoscopic Remodeling of Cellular Membranes. Annu. Rev. Biophys. 2022;51:473–497. doi: 10.1146/annurev-biophys-011422-100054. PubMed DOI PMC

Zimmermann L., Moldzio R., Vazdar K., Krewenka C., Pohl E.E. Nutrient deprivation in neuroblastoma cells alters 4-hydroxynonenal-induced stress response. Oncotarget. 2017;8:8173–8188. doi: 10.18632/oncotarget.14132. PubMed DOI PMC

Macher G., Koehler M., Rupprecht A., Kreiter J., Hinterdorfer P., Pohl E.E. Inhibition of mitochondrial UCP1 and UCP3 by purine nucleotides and phosphate. Biochim. Biophys. Acta Biomembr. 2018;1860:664–672. doi: 10.1016/j.bbamem.2017.12.001. PubMed DOI PMC

Kreiter J., Beitz E., Pohl E.E. A Fluorescence-Based Method to Measure ADP/ATP Exchange of Recombinant Adenine Nucleotide Translocase in Liposomes. Biomolecules. 2020;10:685. doi: 10.3390/biom10050685. PubMed DOI PMC

Beck V., Jaburek M., Breen E.P., Porter R.K., Jezek P., Pohl E.E. A new automated technique for the reconstitution of hydrophobic proteins into planar bilayer membranes. Studies of human recombinant uncoupling protein 1. Biochim. Biophys. Acta. 2006;1757:474–479. doi: 10.1016/j.bbabio.2006.03.006. PubMed DOI

Rupprecht A., Sokolenko E.A., Beck V., Ninnemann O., Jaburek M., Trimbuch T., Klishin S.S., Jezek P., Skulachev V.P., Pohl E.E. Role of the transmembrane potential in the membrane proton leak. Biophys. J. 2010;98:1503–1511. doi: 10.1016/j.bpj.2009.12.4301. PubMed DOI PMC

Bashkirov P.V., Kuzmin P.I., Chekashkina K., Arrasate P., Vera Lillo J., Shnyrova A.V., Frolov V.A. Reconstitution and real-time quantification of membrane remodeling by single proteins and protein complexes. Nat. Protoc. 2020;15:2443–2469. doi: 10.1038/s41596-020-0337-1. PubMed DOI PMC

Frolov V.A., Lizunov V.A., Dunina-Barkovskaya A.Y., Samsonov A.V., Zimmerberg J. Shape bistability of a membrane neck: A toggle switch to control vesicle content release. Proc. Natl. Acad. Sci. USA. 2003;100:8698–8703. doi: 10.1073/pnas.1432962100. PubMed DOI PMC

Ivchenkov D.V., Kuzmin P.I., Galimzyanov T.R., Shnyrova A.V., Bashkirov P.V., Frolov V.A. Nonlinear material and ionic transport through membrane nanotubes. Biochim. Biophys. Acta Biomembr. 2021;1863:183677. doi: 10.1016/j.bbamem.2021.183677. PubMed DOI PMC

Galimzyanov T.R., Bashkirov P.V., Blank P.S., Zimmerberg J., Batishchev O.V., Akimov S.A. Monolayerwise application of linear elasticity theory well describes strongly deformed lipid membranes and the effect of solvent. Soft Matter. 2020;16:1179–1189. doi: 10.1039/C9SM02079A. PubMed DOI

Jaembeck J.P., Lyubartsev A.P. An extension and further validation of an all-atomistic force field for biological membranes. J. Chem. Theory Comput. 2012;8:2938–2948. doi: 10.1021/ct300342n. PubMed DOI

Jaembeck J.P., Lyubartsev A.P. Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B. 2012;116:3164–3179. doi: 10.1021/jp212503e. PubMed DOI PMC

Jaembeck J.P.M., Lyubartsev A.P. Another piece of the membrane puzzle: Extending slipids further. J. Chem. Theory Comput. 2012;9:774–784. doi: 10.1021/ct300777p. PubMed DOI

Klauda J.B., Venable R.M., Freites J.A., O’Connor J.W., Tobias D.J., Mondragon-Ramirez C., Vorobyov I., MacKerell A.D., Jr., Pastor R.W. Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types. J. Phys. Chem. B. 2010;114:7830–7843. doi: 10.1021/jp101759q. PubMed DOI PMC

Singh U.C., Kollman P.A. An Approach to Computing Electrostatic Charges for Molecules. J. Comput. Chem. 1984;5:129–145. doi: 10.1002/jcc.540050204. DOI

Bayly C.I., Cieplak P., Cornell W.D., Kollman P.A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges-the Resp Model. J. Phys. Chem. 1993;97:10269–10280. doi: 10.1021/j100142a004. DOI

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983;79:926–935. doi: 10.1063/1.445869. DOI

Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI

Parrinello M., Rahman A. Polymorphic Transitions in Single-Crystals-a New Molecular-Dynamics Method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984;52:255–268. doi: 10.1080/00268978400101201. DOI

Hess B., Bekker H., Berendsen H.J.C., Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997;18:1463–1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H. DOI

Miyamoto S., Kollman P.A. Settle-an Analytical Version of the Shake and Rattle Algorithm for Rigid Water Models. J. Comput. Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI

Vanegas J.M., Torres-Sanchez A., Arroyo M. Importance of Force Decomposition for Local Stress Calculations in Biomembrane Molecular Simulations. J. Chem. Theory Comput. 2014;10:691–702. doi: 10.1021/ct4008926. PubMed DOI

Torres-Sanchez A., Vanegas J.M., Arroyo M. Examining the Mechanical Equilibrium of Microscopic Stresses in Molecular Simulations. Phys. Rev. Lett. 2015;114:258102. doi: 10.1103/PhysRevLett.114.258102. PubMed DOI

Shi Z., Baumgart T. Membrane tension and peripheral protein density mediate membrane shape transitions. Nat. Commun. 2015;6:5974. doi: 10.1038/ncomms6974. PubMed DOI PMC

Sorre B., Callan-Jones A., Manzi J., Goud B., Prost J., Bassereau P., Roux A. Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc. Natl. Acad. Sci. USA. 2012;109:173–178. doi: 10.1073/pnas.1103594108. PubMed DOI PMC

Fuller N., Rand R.P. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J. 2001;81:243–254. doi: 10.1016/S0006-3495(01)75695-0. PubMed DOI PMC

Esterbauer H., Schaur R.J., Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991;11:81–128. doi: 10.1016/0891-5849(91)90192-6. PubMed DOI

Uchida K. 4-Hydroxy-2-nonenal: A product and mediator of oxidative stress. Prog. Lipid Res. 2003;42:318–343. doi: 10.1016/S0163-7827(03)00014-6. PubMed DOI

Andreyev A., Bondareva T.O., Dedukhova V.I., Mokhova E.N., Skulachev V.P., Tsofina L.M., Volkov N.I., Vygodina T.V. The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria. Eur. J. Biochem. 1989;182:585–592. doi: 10.1111/j.1432-1033.1989.tb14867.x. PubMed DOI

Kreiter J., Rupprecht A., Skulj S., Brkljaca Z., Zuna K., Knyazev D.G., Bardakji S., Vazdar M., Pohl E.E. ANT1 Activation and Inhibition Patterns Support the Fatty Acid Cycling Mechanism for Proton Transport. Int. J. Mol. Sci. 2021;22:2490. doi: 10.3390/ijms22052490. PubMed DOI PMC

Malingriaux E.A., Rupprecht A., Gille L., Jovanovic O., Jezek P., Jaburek M., Pohl E.E. Fatty acids are key in 4-hydroxy-2-nonenal-mediated activation of uncoupling proteins 1 and 2. PLoS ONE. 2013;8:e77786. doi: 10.1371/journal.pone.0077786. PubMed DOI PMC

Garlid K.D., Orosz D.E., Modriansky M., Vassanelli S., Jezek P. On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein. J. Biol. Chem. 1996;271:2615–2620. doi: 10.1074/jbc.271.5.2615. PubMed DOI

Dennis E.A. Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem. 1994;269:13057–13060. doi: 10.1016/S0021-9258(17)36794-7. PubMed DOI

Chen Y.F., Tsang K.Y., Chang W.F., Fan Z.A. Differential dependencies on [Ca2+] and temperature of the monolayer spontaneous curvatures of DOPE, DOPA and cardiolipin: Effects of modulating the strength of the inter-headgroup repulsion. Soft Matter. 2015;11:4041–4053. doi: 10.1039/C5SM00577A. PubMed DOI

Zoni V., Khaddaj R., Campomanes P., Thiam A.R., Schneiter R., Vanni S. Pre-existing bilayer stresses modulate triglyceride accumulation in the ER versus lipid droplets. Elife. 2021;10:e62886. doi: 10.7554/eLife.62886. PubMed DOI PMC

Renne M.F., Bao X., Hokken M.W., Bierhuizen A.S., Hermansson M., Sprenger R.R., Ewing T.A., Ma X., Cox R.C., Brouwers J.F., et al. Molecular species selectivity of lipid transport creates a mitochondrial sink for di-unsaturated phospholipids. EMBO J. 2022;41:e106837. doi: 10.15252/embj.2020106837. PubMed DOI PMC

Orsi M., Essex J.W. Physical properties of mixed bilayers containing lamellar and nonlamellar lipids: Insights from coarse-grain molecular dynamics simulations. Faraday Discuss. 2013;161:249–272; discussion 273–303. doi: 10.1039/C2FD20110K. discussion 273–303. PubMed DOI

Kreiter J., Brkljača Z., Škulj S., Bardakji S., Vazdar M., Pohl E.E. Mechanism of the ANT-mediated transport of fatty acid anions across the inner mitochondrial membrane. bioRxiv. 2022 doi: 10.1101/2022.06.27.497434. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...