Mitochondrial phospholipase A2 activated by reactive oxygen species in heart mitochondria induces mild uncoupling

. 2010 ; 59 (5) : 737-747. [epub] 20100420

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20406040

Homeostasis of reactive oxygen species (ROS) in cardiomyocytes is critical for elucidation of normal heart physiology and pathology. Mitochondrial phospholipases A2 (mt-PLA2) have been previously suggested to be activated by ROS. Therefore, we have attempted to elucidate physiological role of such activation. We have found that function of a specific i-isoform of mitochondrial phospholipase A2 (mt-iPLA2) is activated by tert-butylhydroperoxide in isolated rat heart mitochondria. Isoform specificity was judged from the inhibition by bromoenol lactone (BEL), a specific iPLA2 inhibitor. Concomitant uncoupling has been caused by free fatty acids, since it was inhibited by bovine serum albumin. The uncoupling was manifested as a respiration burst accompanied by a slight decrease in mitochondrial inner membrane potential. Since this uncoupling was sensitive to carboxyatractyloside and purine nucleotide di- and tri-phosphates, we conclude that it originated from the onset of fatty acid cycling mediated by the adenine nucleotide translocase (major contribution) and mitochondrial uncoupling protein(s) (minor contribution), respectively. Such a mild uncoupling may provide a feedback downregulation of oxidative stress, since it can further attenuate mitochondrial production of ROS. In conclusion, ROS-induced function of cardiac mt-iPLA2 may stand on a pro-survival side of ischemia-reperfusion injury.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mitochondrial Physiology of Cellular Redox Regulations

. 2024 Aug 30 ; 73 (S1) : S217-S242. [epub] 20240422

Membrane Lipid Reshaping Underlies Oxidative Stress Sensing by the Mitochondrial Proteins UCP1 and ANT1

. 2022 Nov 23 ; 11 (12) : . [epub] 20221123

Antioxidant Role and Cardiolipin Remodeling by Redox-Activated Mitochondrial Ca2+-Independent Phospholipase A2γ in the Brain

. 2022 Jan 20 ; 11 (2) : . [epub] 20220120

Antioxidant Synergy of Mitochondrial Phospholipase PNPLA8/iPLA2γ with Fatty Acid-Conducting SLC25 Gene Family Transporters

. 2021 Apr 26 ; 10 (5) : . [epub] 20210426

Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling

. 2018 Sep 01 ; 29 (7) : 667-714. [epub] 20180314

Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity

. 2018 Jun 19 ; 23 (6) : . [epub] 20180619

Cytoprotective activity of mitochondrial uncoupling protein-2 in lung and spleen

. 2018 Apr ; 8 (4) : 692-701. [epub] 20180312

H₂O₂-Activated Mitochondrial Phospholipase iPLA₂γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein-Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells

. 2015 Oct 20 ; 23 (12) : 958-72. [epub] 20150521

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace