Cytoprotective activity of mitochondrial uncoupling protein-2 in lung and spleen
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29632821
PubMed Central
PMC5881546
DOI
10.1002/2211-5463.12410
PII: FEB412410
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidative synergy, cytoprotection, mitochondrial phospholipase iPLA2γ, mitochondrial uncoupling protein UCP2, protein carbonylation,
- Publikační typ
- časopisecké články MeSH
Mitochondrial uncoupling protein-2 (UCP2) mediates free fatty acid (FA)-dependent H+ translocation across the inner mitochondrial membrane (IMM), which leads to acceleration of respiration and suppression of mitochondrial superoxide formation. Redox-activated mitochondrial phospholipase A2 (mt-iPLA2γ) cleaves FAs from the IMM and has been shown to acts in synergy with UCP2. Here, we tested the mechanism of mt-iPLA2γ-dependent UCP2-mediated antioxidant protection using lipopolysaccharide (LPS)-induced pro-inflammatory and pro-oxidative responses and their acute influence on the overall oxidative stress reflected by protein carbonylation in murine lung and spleen mitochondria and tissue homogenates. We provided challenges either by blocking the mt-iPLA 2γ function by the selective inhibitor R-bromoenol lactone (R-BEL) or by removing UCP2 by genetic ablation. We found that the basal levels of protein carbonyls in lung and spleen tissues and isolated mitochondria were higher in UCP2-knockout mice relative to the wild-type (wt) controls. The administration of R-BEL increased protein carbonyl levels in wt but not in UCP2-knockout (UCP2-KO) mice. LPS further increased the protein carbonyl levels in UCP2-KO mice, which correlated with protein carbonyl levels determined in wt mice treated with R-BEL. These results are consistent with the UCP2/mt-iPLA 2γ antioxidant mechanisms in these tissues and support the existence of UCP2-synergic mt-iPLA 2γ-dependent cytoprotective mechanism in vivo.
Zobrazit více v PubMed
Ježek P, Žáčková M, Růžička M, Škobisová E and Jabůrek M (2004) Mitochondrial uncoupling proteins–facts and fantasies. Physiol Res 53(S1), S199–S211. PubMed
Skulachev VP (1998) Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363, 100–124. PubMed
Ježek P, Holendová B, Garlid KD and Jabůrek M (2018) Mitochondrial uncoupling proteins: subtle regulators of cellular redox signaling. Antioxid Redox Signal, in press. https://doi.org/10.1089/ars.2017.7225 PubMed DOI PMC
Plecitá‐Hlavatá L and Ježek P (2016) Integration of superoxide formation and cristae morphology for mitochondrial redox signaling. Int J Biochem Cell Biol 80, 31–50. PubMed
Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100, 14–31. PubMed
Jabůrek M, Varecha M, Gimeno REE, Dembski M, Jezek P, Zhang MB, Burn P, Tartaglia LA and Garlid KD (1999) Transport function and regulation of mitochondrial uncoupling proteins 2 and 3. J Biol Chem 274, 26003–26007. PubMed
Jabůrek M, Miyamoto S, Di Mascio P, Garlid KD and Ježek P (2004) Hydroperoxy fatty acid cycling mediated by mitochondrial uncoupling protein UCP2. J Biol Chem 279, 53097–53102. PubMed
Negre‐Salvayre A, Hirtz C, Carrera G, Cazenave R, Troly M, Salvayre R, Penicaud L and Casteilla L (1997) A role for uncoupling protein‐2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J 11, 809–815. PubMed
Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves‐Guerra MC, Goubern M, Surwit R et al (2000) Disruption of the uncoupling protein‐2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet 26, 435–439. PubMed
Jabůrek M, Ježek J, Zelenka J and Ježek P (2013) Antioxidant activity by a synergy of redox‐sensitive mitochondrial phospholipase A2 and uncoupling protein‐2 in lung and spleen. Int J Biochem Cell Biol 45, 816–825. PubMed
Ježek J, Dlasková A, Zelenka J, Jabůrek M and Ježek P (2015) H2O2 ‐activated mitochondrial phospholipase iPLA2γ prevents lipotoxic oxidative stress in synergy with UCP2, amplifies signaling via G‐protein–coupled receptor GPR40, and regulates insulin secretion in pancreatic β‐cells. Antioxid Redox Signal 23, 958–972. PubMed PMC
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T and Yamamoto K (2011) Recent progress in phospholipase A2 research: from cells to animals to humans. Prog Lipid Res 50, 152–192. PubMed
Ramanadham S, Ali T, Ashley JW, Bone RN, Hancock WD and Lei X (2015) Calcium‐independent phospholipases A2 and their roles in biological processes and diseases. J Lipid Res 56, 1643–1668. PubMed PMC
Rauckhorst AJ, Pfeiffer DR and Broekemeier KM (2015) The iPLA2γ is identified as the membrane potential sensitive phospholipase in liver mitochondria. FEBS Lett 589, 2367–2371. PubMed
Bao S, Song H, Tan M, Wohltmann M, Ladenson JH and Turk J (2012) Group VIB phospholipase A2 promotes proliferation of INS‐1 insulinoma cells and attenuates lipid peroxidation and apoptosis induced by inflammatory cytokines and oxidant agents. Oxid Med Cell Longev 2012, 1–16. PubMed PMC
Elimam H, Papillon J, Takano T and Cybulsky AV (2013) Complement‐mediated activation of calcium‐independent phospholipase A2γ: role of protein kinases and phosphorylation. J Biol Chem 288, 3871–3885. PubMed PMC
Moon SH, Jenkins CM, Kiebish MA, Sims HF, Mancuso DJ and Gross RW (2012) Genetic ablation of calcium‐independent phospholipase A2γ (iPLA2γ) attenuates calcium‐induced opening of the mitochondrial permeability transition pore and resultant cytochrome c release. J Biol Chem 287, 29837–29850. PubMed PMC
Elimam H, Papillon J, Kaufman DR, Guillemette J, Aoudjit L, Gross RW, Takano T and Cybulsky AV (2016) Genetic ablation of calcium‐independent phospholipase A2γ induces glomerular injury in mice. J Biol Chem 291, 14468–14482. PubMed PMC
Liu G‐YY, Moon SH, Jenkins CM, Li M, Sims HF, Guan S, Gross RW, Ho Moon S, Jenkins CM, Li M et al (2017) The phospholipase iPLA2 is a major mediator releasing oxidized aliphatic chains from cardiolipin, integrating mitochondrial bioenergetics and signaling. J Biol Chem 292, 10672–10684. PubMed PMC
Ježek J, Jabůrek M, Zelenka J and Ježek P (2010) Mitochondrial phospholipase A2 activated by reactive oxygen species in heart mitochondria induces mild uncoupling. Physiol Res 59, 737–747. PubMed
Augustyniak E, Adam A, Wojdyla K, Rogowska‐Wrzesinska A, Willetts R, Korkmaz A, Atalay M, Weber D, Grune T, Borsa C et al (2015) Validation of protein carbonyl measurement: a multi‐centre study. Redox Biol 4, 149–157. PubMed PMC
Weber D, Davies MJ and Grune T (2015) Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: focus on sample preparation and derivatization conditions. Redox Biol 5, 367–380. PubMed PMC
Buss H, Chan TP, Sluis KB, Domigan NM and Winterbourn CC (1997) Protein carbonyl measurement by a sensitive ELISA method. Free Radic Biol Med 23, 361–366. PubMed
Kizaki T, Suzuki K, Hitomi Y, Taniguchi N, Saitoh D, Watanabe K, Onoé K, Day NK, Good RA, Ohno H et al (2002) Uncoupling protein 2 plays an important role in nitric oxide production of lipopolysaccharide‐stimulated macrophages. Proc Natl Acad Sci USA 99, 9392–9397. PubMed PMC
Emre Y, Hurtaud C, Nübel T, Criscuolo F, Ricquier D and Cassard‐Doulcier AM (2007) Mitochondria contribute to LPS‐induced MAPK activation via uncoupling protein UCP2 in macrophages. Biochem J 402, 271–278. PubMed PMC
Copeland S, Warren HS, Lowry SF, Calvano SE and Remick D (2005) Acute inflammatory response to endotoxin in mice and humans. Clin Diagn Lab Immunol 12, 60–67. PubMed PMC
Jenkins CM, Han X, Mancuso DJ and Gross RW (2002) Identification of calcium‐independent phospholipase A2 (iPLA2) β, and not iPLA2γ, as the mediator of arginine vasopressin‐induced arachidonic acid release in A‐10 smooth muscle cells. Enantioselective mechanism‐based discrimination of mammalian iPLA2s. J Biol Chem 277, 32807–32814. PubMed
Daniels SB, Cooney E, Sofia MJ, Chakravarty PK and Katzenellenbogen JA (1983) Haloenol lactones. Potent enzyme‐activated irreversible inhibitors for alpha‐chymotrypsin. J Biol Chem 258, 15046–15053. PubMed
Balsinde J and Dennis EA (1996) Bromoenol lactone inhibits magnesium‐dependent phosphatidate phosphohydrolase and blocks triacylglycerol biosynthesis in mouse P388D1 macrophages. J Biol Chem 271, 31937–31941. PubMed
Piantadosi CA and Suliman HB (2017) Mitochondrial dysfunction in lung pathogenesis. Annu Rev Physiol 79, 495–515. PubMed
Varga I, Babala J and Kachlik D (2018) Anatomic variations of the spleen: current state of terminology, classification, and embryological background. Surg Radiol Anat 40, 21–29. PubMed
Ježek P and Hlavatá L (2005) Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 37, 2478–2503. PubMed