Mitochondrial Uncoupling Proteins (UCP1-UCP3) and Adenine Nucleotide Translocase (ANT1) Enhance the Protonophoric Action of 2,4-Dinitrophenol in Mitochondria and Planar Bilayer Membranes

. 2021 Aug 09 ; 11 (8) : . [epub] 20210809

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34439844

Grantová podpora
P 31559 Austrian Science Fund FWF - Austria

2,4-Dinitrophenol (DNP) is a classic uncoupler of oxidative phosphorylation in mitochondria which is still used in "diet pills", despite its high toxicity and lack of antidotes. DNP increases the proton current through pure lipid membranes, similar to other chemical uncouplers. However, the molecular mechanism of its action in the mitochondria is far from being understood. The sensitivity of DNP's uncoupling action in mitochondria to carboxyatractyloside, a specific inhibitor of adenine nucleotide translocase (ANT), suggests the involvement of ANT and probably other mitochondrial proton-transporting proteins in the DNP's protonophoric activity. To test this hypothesis, we investigated the contribution of recombinant ANT1 and the uncoupling proteins UCP1-UCP3 to DNP-mediated proton leakage using the well-defined model of planar bilayer lipid membranes. All four proteins significantly enhanced the protonophoric effect of DNP. Notably, only long-chain free fatty acids were previously shown to be co-factors of UCPs and ANT1. Using site-directed mutagenesis and molecular dynamics simulations, we showed that arginine 79 of ANT1 is crucial for the DNP-mediated increase of membrane conductance, implying that this amino acid participates in DNP binding to ANT1.

Zobrazit více v PubMed

Cutting W., Mehrtens H., Tainter M. Actions and uses of dinitrophenol: Promising metabolic applications. J. Am. Med. Assoc. 1933;101:193–195. doi: 10.1001/jama.1933.02740280013006. DOI

Tainter M.L., Cutting W.C., Stockton A. Use of Dinitrophenol in Nutritional Disorders* A Critical Survey of Clinical Results. Am. J. Public Health Nations Health. 1934;24:1045–1053. doi: 10.2105/AJPH.24.10.1045. PubMed DOI PMC

Colman E. Dinitrophenol and obesity: An early twentieth-century regulatory dilemma. Regul. Toxicol. Pharmacol. 2007;48:115–117. doi: 10.1016/j.yrtph.2007.03.006. PubMed DOI

Koncz D., Tóth B., Roza O., Csupor D. A Systematic Review of the European Rapid Alert System for Food and Feed: Tendencies in Illegal Food Supplements for Weight Loss. Front. Pharmacol. 2021;11:611361. doi: 10.3389/fphar.2020.611361. PubMed DOI PMC

Ebert A., Hannesschlaeger C., Goss K.-U., Pohl P. Passive Permeability of Planar Lipid Bilayers to Organic Anions. Biophys. J. 2018;115:1931–1941. doi: 10.1016/j.bpj.2018.09.025. PubMed DOI PMC

Hannesschlaeger C., Horner A., Pohl P. Intrinsic Membrane Permeability to Small Molecules. Chem. Rev. 2019;119:5922–5953. doi: 10.1021/acs.chemrev.8b00560. PubMed DOI

Liberman E.A., Topaly V.P., Silberstein A.Y. Charged and neutral ion carriers through bimolecular phospholipid membranes. Biochim. Biophys. Acta. 1970;196:221–234. doi: 10.1016/0005-2736(70)90010-6. PubMed DOI

Bakker E., Heuvel E.V.D., Wiechmann A., Van Dam K. A comparison between the effectiveness of uncouplers of oxidative phosphorylation in mitochondria and in different artificial membrane systems. Biochim. Biophys. Acta Bioenerg. 1973;292:78–87. doi: 10.1016/0005-2728(73)90252-1. PubMed DOI

Bielawski J., Thompson T.E., Lehninger A.L. The effect of 2,4-dinitrophenol on the electrical resistance of phospholipid bilayer membranes. Biochem. Biophys. Res. Commun. 1966;24:948–954. doi: 10.1016/0006-291X(66)90342-1. PubMed DOI

Hopfer U., Lehninger A.L., Thompson T.E. Protonic conductance across phospholipid bilayer membranes induced by uncoupling agents for oxidative phosphorylation. Proc. Natl. Acad. Sci. USA. 1968;59:484–490. doi: 10.1073/pnas.59.2.484. PubMed DOI PMC

Skulachbv V., Sharaf A., Yagujzinsky L., Jasaitis A., Liberman E., Topali V. The effect of uncouplers on mitochondria, respiratory enzyme complexes and artificial phospholipid membranes. Biosystems. 1968;2:98–105. doi: 10.1016/0303-2647(68)90014-2. PubMed DOI

Liberman E.A., Topaly V.P., Tsofina L.M., Jasaitis A.A., Skulachev V.P. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature. 1969;222:1076–1078. doi: 10.1038/2221076a0. PubMed DOI

Liberman E., Topaly V. Selective transport of ions through bimolecular phospholipid membranes. Biochim. Biophys. Acta Biomembr. 1968;163:125–136. doi: 10.1016/0005-2736(68)90089-8. PubMed DOI

Ting H., Wilson D.F., Chance B. Effects of uncouplers of oxidative phosphorylation on the specific conductance of bimolecular lipid membranes. Arch. Biochem. Biophys. 1970;141:141–146. doi: 10.1016/0003-9861(70)90116-5. PubMed DOI

Hanstein W.G., Hatefi Y. Trinitrophenol: A Membrane-Impermeable Uncoupler of Oxidative Phosphorylation. Proc. Natl. Acad. Sci. USA. 1974;71:288–292. doi: 10.1073/pnas.71.2.288. PubMed DOI PMC

Cyboron G.W., Dryer R. Uncoupling of hamster brown adipose and liver mitochondria by 2-azido-4-nitrophenol and binding properties of the reagent. Arch. Biochem. Biophys. 1977;179:141–146. doi: 10.1016/0003-9861(77)90097-2. PubMed DOI

Kurup C.K.R., Sanadi D.R. Photoaffinity labeling of uncoupler binding sites on mitochondrial membrane. J. Bioenerg. Biomembr. 1977;9:1–15. doi: 10.1007/BF00745039. PubMed DOI

Andreyev A., Bondareva T., Dedukhova V., Mokhova E., Skulachev V., Volkov N. Carboxyatractylate inhibits the uncoupling effect of free fatty acids. FEBS Lett. 1988;226:265–269. doi: 10.1016/0014-5793(88)81436-4. PubMed DOI

Lou P.-H., Hansen B.S., Olsen P.H., Tullin S., Murphy M.P., Brand M.D. Mitochondrial uncouplers with an extraordinary dynamic range. Biochem. J. 2007;407:129–140. doi: 10.1042/BJ20070606. PubMed DOI PMC

Kopustinskiene D.M., Jovaisiene J., Liobikas J., Toleikis A. Diazoxide and Pinacidil Uncouple Pyruvate–Malate-Induced Mitochondrial Respiration. J. Bioenerg. Biomembr. 2002;34:49–53. doi: 10.1023/A:1013870704002. PubMed DOI

Ortega R., Garcia N. The flavonoid quercetin induces changes in mitochondrial permeability by inhibiting adenine nu-cleotide translocase. J. Bioenerg. Biomembr. 2009;41:41–47. doi: 10.1007/s10863-009-9198-6. PubMed DOI

Lu Y., Liu S., Wang Y., Wang D., Gao J., Zhu L. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death. Eur. J. Pharmacol. 2016;786:212–223. doi: 10.1016/j.ejphar.2016.06.010. PubMed DOI

Antonenko Y.N., Denisov S., Khailova L.S., Nazarov P.A., Rokitskaya T., Tashlitsky V.N., Firsov A.M., Korshunova G.A., Kotova E.A. Alkyl-substituted phenylamino derivatives of 7-nitrobenz-2-oxa-1,3-diazole as uncouplers of oxidative phosphorylation and antibacterial agents: Involvement of membrane proteins in the uncoupling action. Biochim. Biophys. Acta Biomembr. 2017;1859:377–387. doi: 10.1016/j.bbamem.2016.12.014. PubMed DOI

Firsov A.M., Popova L.B., Khailova L.S., Nazarov P.A., Kotova E.A., Antonenko Y.N. Protonophoric action of BAM15 on planar bilayers, liposomes, mitochondria, bacteria and neurons. Bioelectrochemistry. 2021;137:107673. doi: 10.1016/j.bioelechem.2020.107673. PubMed DOI

Skulachev V.P. Uncoupling: New approaches to an old problem of bioenergetics. Biochim. Biophys. Acta Bioenerg. 1998;1363:100–124. doi: 10.1016/S0005-2728(97)00091-1. PubMed DOI

Kreiter J., Rupprecht A., Škulj S., Brkljača Z., Žuna K., Knyazev D., Bardakji S., Vazdar M., Pohl E. ANT1 Activation and Inhibition Patterns Support the Fatty Acid Cycling Mechanism for Proton Transport. Int. J. Mol. Sci. 2021;22:2490. doi: 10.3390/ijms22052490. PubMed DOI PMC

Kreiter J., Beitz E., Pohl E.E. A Fluorescence-Based Method to Measure ADP/ATP Exchange of Recombinant Adenine Nucleotide Translocase in Liposomes. Biomolecules. 2020;10:685. doi: 10.3390/biom10050685. PubMed DOI PMC

Rupprecht A., Sokolenko E.A., Beck V., Ninnemann O., Jaburek M., Trimbuch T., Klishin S.S., Jezek P., Skulachev V., Pohl E.E. Role of the Transmembrane Potential in the Membrane Proton Leak. Biophys. J. 2010;98:1503–1511. doi: 10.1016/j.bpj.2009.12.4301. PubMed DOI PMC

Macher G., Koehler M., Rupprecht A., Kreiter J., Hinterdorfer P., Pohl E.E. Inhibition of mitochondrial UCP1 and UCP3 by purine nucleotides and phosphate. Biochim. Biophys. Acta Biomembr. 2018;1860:664–672. doi: 10.1016/j.bbamem.2017.12.001. PubMed DOI PMC

Kreiter J., Pohl E.E. A Micro-agar Salt Bridge Electrode for Analyzing the Proton Turnover Rate of Recombinant Membrane Proteins. J. Vis. Exp. 2019;143:e58552. doi: 10.3791/58552. PubMed DOI

Beck V., Jabůrek M., Breen E.P., Porter R.K., Ježek P., Pohl E.E. A new automated technique for the reconstitution of hydrophobic proteins into planar bilayer membranes. Studies of human recombinant uncoupling protein 1. Biochim. Biophys. Acta Bioenerg. 2006;1757:474–479. doi: 10.1016/j.bbabio.2006.03.006. PubMed DOI

Kreiter J., Rupprecht A., Zimmermann L., Moschinger M., Rokitskaya T., Antonenko Y.N., Gille L., Fedorova M., Pohl E.E. Molecular Mechanisms Responsible for Pharmacological Effects of Genipin on Mitochondrial Proteins. Biophys. J. 2019;117:1845–1857. doi: 10.1016/j.bpj.2019.10.021. PubMed DOI PMC

Johnson D., Lardy H. Isolation of liver or kidney mitochondria. Anal. Biochem. 1967:94–96. doi: 10.1016/0076-6879(67)10018-9. PubMed DOI

Åkerman K.E., Wikström M.K. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 1976;68:191–197. doi: 10.1016/0014-5793(76)80434-6. PubMed DOI

Škulj S., Brkljača Z., Vazdar M. Molecular Dynamics Simulations of the Elusive Matrix-Open State of Mitochondrial ADP/ATP Carrier. Isr. J. Chem. 2020;60:735–743. doi: 10.1002/ijch.202000011. DOI

Jo S., Lim J.B., Klauda J.B., Im W. CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. Biophys. J. 2009;97:50–58. doi: 10.1016/j.bpj.2009.04.013. PubMed DOI PMC

Wu E.L., Cheng X., Jo S., Rui H., Song K.C., Davila-Contreras E.M., Qi Y., Lee J., Monje-Galvan V., Venable R.M., et al. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J. Comput. Chem. 2014;35:1997–2004. doi: 10.1002/jcc.23702. PubMed DOI PMC

Lee J., Cheng X., Swails J.M., Yeom M.S., Eastman P.K., Lemkul J.A., Wei S., Buckner J., Jeong J.C., Qi Y., et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016;12:405–413. doi: 10.1021/acs.jctc.5b00935. PubMed DOI PMC

Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B.L., Grubmuller H., MacKerell A.D., Jr. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods. 2017;14:71–73. doi: 10.1038/nmeth.4067. PubMed DOI PMC

Vanommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., Darian E., Guvench O., Lopes P.E.M., Vorobyov I., et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2009;31:671–690. doi: 10.1002/jcc.21367. PubMed DOI PMC

Jo S., Kim T., Im W. Automated Builder and Database of Protein/Membrane Complexes for Molecular Dynamics Simulations. PLoS ONE. 2007;2:e880. doi: 10.1371/journal.pone.0000880. PubMed DOI PMC

Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984;52:255–268. doi: 10.1080/00268978400101201. DOI

Parrinello M., Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981;52:7182–7190. doi: 10.1063/1.328693. DOI

Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI

Humphrey W., Dalke A., Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Abraham M.J., Murtola T., Schulz R., Páll S., Smith J., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Andreyev A.Y., Bondareva T.O., Dedukhova V.I., Mokhova E.N., Skulachev V.P., Tsofina L.M., Volkov N.I., Vygodina T.V. The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria. Eur. J. Biochem. 1989;182:585–592. doi: 10.1111/j.1432-1033.1989.tb14867.x. PubMed DOI

Schonfeld P. Does the function of adenine nucleotide translocase in fatty acid uncoupling depend on the type of mitochondria? FEBS Lett. 1990;264:246–248. doi: 10.1016/0014-5793(90)80259-L. PubMed DOI

Hilse K.E., Rupprecht A., Egerbacher M., Bardakji S., Zimmermann L., Wulczyn A., Pohl E.E. The Expression of Un-coupling Protein 3 Coincides with the Fatty Acid Oxidation Type of Metabolism in Adult Murine Heart. Front. Physiol. 2018;9:747. doi: 10.3389/fphys.2018.00747. PubMed DOI PMC

Skárka L., Bardová K., Brauner P., Flachs P., Jarkovská D., Kopecký J., Ostádal B. Expression of mitochondrial uncoupling protein 3 and adenine nucleotide translocase 1 genes in developing rat heart: Putative involvement in control of mitochondrial membrane potential. J. Mol. Cell. Cardiol. 2003;35 PubMed

Bertholet A.M., Chouchani E.T., Kazak L., Angelin A., Fedorenko A., Long J.Z., Vidoni S., Garrity R., Cho J., Terada N., et al. H+ transport is an integral function of the mitochondrial ADP/ATP carrier. Nat. Cell Biol. 2019;571:515–520. doi: 10.1038/s41586-019-1400-3. PubMed DOI PMC

Brustovetsky N., Klingenberg M. The reconstituted ADP/ATP carrier can mediate H+ transport by free fatty acids, which is further stimulated by mersalyl. J. Biol. Chem. 1994;269:27329–27336. doi: 10.1016/S0021-9258(18)46989-X. PubMed DOI

Nelson D., Lawson J.E., Klingenberg M., Douglas M.G. Site-directed Mutagenesis of the Yeast Mitochondrial ADP/ATP Translocator: Six Arginines and One Lysine are Essential. J. Mol. Biol. 1993;230:1159–1170. doi: 10.1006/jmbi.1993.1233. PubMed DOI

Heidkämper D., Müller V., Nelson D., Klingenberg M. Probing the Role of Positive Residues in the ADP/ATP Carrier from Yeast. The Effect of Six Arginine Mutations on Transport and the Four ATP versus ADP Exchange Modes. Biochemistry. 1996;35:16144–16152. doi: 10.1021/bi960668j. PubMed DOI

Pebay-Peyroula E., Dahout-Gonzalez C., Kahn R., Trézéguet V., Lauquin G.J.-M., Brandolin G. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nat. Cell Biol. 2003;426:39–44. doi: 10.1038/nature02056. PubMed DOI

Wang Y., Tajkhorshid E. Electrostatic funneling of substrate in mitochondrial inner membrane carriers. Proc. Natl. Acad. Sci. USA. 2008;105:9598–9603. doi: 10.1073/pnas.0801786105. PubMed DOI PMC

Dehez F., Pebay-Peyroula E., Chipot C. Binding of ADP in the Mitochondrial ADP/ATP Carrier Is Driven by an Electrostatic Funnel. J. Am. Chem. Soc. 2008;130:12725–12733. doi: 10.1021/ja8033087. PubMed DOI

Parker V.H. Uncouplers of rat-liver mitochondrial oxidative phosphorylation. Biochem. J. 1965;97:658–662. doi: 10.1042/bj0970658. PubMed DOI PMC

Pohl E.E., Rupprecht A., Macher G., Hilse K.E. Important Trends in UCP3 Investigation. Front. Physiol. 2019;10:470. doi: 10.3389/fphys.2019.00470. PubMed DOI PMC

Skulachev V.P. Fatty acid circuit as a physiological mechanism of uncoupling of oxidative phosphorylation. FEBS Lett. 1991;294:158–162. doi: 10.1016/0014-5793(91)80658-P. PubMed DOI

Klingenberg M. Wanderings in bioenergetics and biomembranes. Biochim. Biophys. Acta. 2010;1797:579–594. doi: 10.1016/j.bbabio.2010.02.012. PubMed DOI

Kreiter J., Skulj S., Brkljaca Z., Zuna K., Vazdar M., Pohl E.E. The transport of fatty acid anions across the inner mitochondrial membrane by the adenine nucleotide translocase. Eur. Biophys. J. 2021;50(Suppl. 1):S57.

Langdown M.L., Smith N.D., Sugden M.C., Holness M.J. Excessive glucocorticoid exposure during late intrauterine development modulates the expression of cardiac uncoupling proteins in adult hypertensive male offspring. Pflügers Archiv. 2001;442:248–255. doi: 10.1007/s004240100519. PubMed DOI

Hilse K.E., Kalinovich A.V., Rupprecht A., Smorodchenko A., Zeitz U., Staniek K., Erben R.G., Pohl E.E. The expression of UCP3 directly correlates to UCP1 abundance in brown adipose tissue. Biochim. Biophys. Acta Bioenerg. 2016;1857:72–78. doi: 10.1016/j.bbabio.2015.10.011. PubMed DOI PMC

Samartsev V.N., Smirnov A.V., Zeldi I.P., Markova O.V., Mokhova E.N., Skulachev V.P. Involvement of aspartate/glutamate antiporter in fatty acid-induced uncoupling of liver mitochondria. Biochim. Biophys. Acta. 1997;1319:251–257. doi: 10.1016/S0005-2728(96)00166-1. PubMed DOI

Wieckowski M., Wojtczak L. Involvement of the Dicarboxylate Carrier in the Protonophoric Action of Long-Chain Fatty Acids in Mitochondria. Biochem. Biophys. Res. Commun. 1997;232:414–417. doi: 10.1006/bbrc.1997.6298. PubMed DOI

Engstová H., Z̆ác̆ková M., Růz̆ic̆ka M., Meinhardt A., Hanuš J., Krämer R., Jezek P. Natural and Azido Fatty Acids Inhibit Phosphate Transport and Activate Fatty Acid Anion Uniport Mediated by the Mitochondrial Phosphate Carrier. J. Biol. Chem. 2001;276:4683–4691. doi: 10.1074/jbc.M009409200. PubMed DOI

Yu X.X., Lewin D.A., Zhong A., Brush J., Schow P.W., Sherwood S.W., Pan G., Adams S.H. Overexpression of the human 2-oxoglutarate carrier lowers mitochondrial membrane potential in HEK-293 cells: Contrast with the unique cold-induced mito-chondrial carrier CGI-69. Biochem. J. 2001;353:369–375. doi: 10.1042/bj3530369. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...