Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu historické články, časopisecké články, práce podpořená grantem
PubMed
28186115
PubMed Central
PMC5301483
DOI
10.1038/srep42150
PII: srep42150
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- dějiny starověku MeSH
- fylogeneze * MeSH
- interakce genů a prostředí MeSH
- mapování chromozomů MeSH
- pohlavní chromozomy chemie MeSH
- procesy určující pohlaví * MeSH
- RNA ribozomální genetika dějiny MeSH
- skořápky zvířat anatomie a histologie MeSH
- želvy anatomie a histologie klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- dějiny starověku MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální MeSH
Turtles demonstrate variability in sex determination ranging from environmental sex determination (ESD) to highly differentiated sex chromosomes. However, the evolutionary dynamics of sex determining systems in this group is not well known. Differentiated ZZ/ZW sex chromosomes were identified in two species of the softshell turtles (Trionychidae) from the subfamily Trionychinae and Z-specific genes were identified in a single species. We tested Z-specificity of a subset of these genes by quantitative PCR comparing copy gene numbers in male and female genomes in 10 species covering the phylogenetic diversity of trionychids. We demonstrated that differentiated ZZ/ZW sex chromosomes are conserved across the whole family and that they were already present in the common ancestor of the extant trionychids. As the sister lineage, Carettochelys insculpta, possess ESD, we can date the origin of the sex chromosomes in trionychids between 200 Mya (split of Trionychidae and Carettochelyidae) and 120 Mya (basal splitting of the recent trionychids). The results support the evolutionary stability of differentiated sex chromosomes in some lineages of ectothermic vertebrates. Moreover, our approach determining sex-linkage of protein coding genes can be used as a reliable technique of molecular sexing across trionychids useful for effective breeding strategy in conservation projects of endangered species.
Faculty of Science Charles University Department of Ecology Viničná 7 12844 Praha 2 Czech Republic
Museum of Zoology Senckenberg Dresden A B Meyer Building 01109 Dresden Germany
Turtle Island Turtle Conservation Center Am Katzelbach 98 8054 Graz Austria
Zobrazit více v PubMed
Johnson Pokorná M. & Kratochvíl L. What was the ancestral sex-determining mechanism in amniote vertebrates? Biol Rev 91, 1–12 (2016). PubMed
Sarre S. D., Georges A. & Quinn A. The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. BioEssays 26, 639–645 (2004). PubMed
Ezaz T., Srikulnath S. & Marshall Graves J. A. Origin of amniote sex chromosomes: an ancestral super-sex chromosome, or common requirements? J Hered 108, 94–105 (2016). PubMed
Veyrunes F. et al.. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res 18, 965–973 (2008). PubMed PMC
Mank J. E. & Ellegren H. Parallel divergence and degradation of the avian W sex chromosome. Trends Ecol Evol 22, 389–391 (2007). PubMed
Jetz W., Thomas G. H., Joy J. B., Hartmann K. & Mooers A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012). PubMed
Perrin N. Sex reversal: a fountain of youth for sex chromosomes? Evolution 63, 3043–3049 (2009). PubMed
Dufresnes C. et al.. Sex-chromosome homomorphy in Palearctic tree frogs results from both turnovers and XY recombination. Mol Biol Evol 32, 2328–2337 (2015). PubMed
Ramsey M. & Crews D. Steroid signaling and temperature-dependent sex determination - Reviewing the evidence for early action of estrogen during ovarian determination in turtles. Seminars Cell Dev Biol 20, 283–292 (2009). PubMed PMC
Quinn A. E. et al.. Isolation and development of a molecular sex marker for Bassiana duperreyi, a lizard with XX/XY sex chromosomes and temperature-induced sex reversal. Mol Genet Genom 281, 665–672 (2009). PubMed
Holleley C. E. et al.. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature 523, 79–82 (2015). PubMed
Pokorná M. & Kratochvíl L. Phylogeny of sex-determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zool J Linn Soc 156, 168–183 (2009).
Gamble T. et al.. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol Biol Evol 32, 1296–1309 (2015). PubMed
Valenzuela N. & Adams D. C. Chromosome number and sex determination coevolve in turtles. Evolution 65, 1808–1813 (2011). PubMed
Ezaz T. et al.. Molecular marker suggests rapid changes of sex determining mechanisms in Australian dragon lizards. Chromosome Res 17, 91–98 (2009). PubMed
Gamble T. A review of sex determining mechanisms in geckos (Gekkota: Squamata). Sex Dev 4, 88–103 (2010). PubMed PMC
Pokorná M., Rens W., Rovatsos M. & Kratochvíl L. A ZZ/ZW sex chromosome system in the thick-tailed gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet Genome Res 142, 190–196 (2014). PubMed
Rovatsos M., Altmanová M., Pokorná M. & Kratochvíl L. Conserved sex chromosomes across adaptively radiated Anolis lizards. Evolution 68, 2079–2085 (2014). PubMed
Rovatsos M., Pokorná M., Altmanová M. & Kratochvíl L. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas. Biol Lett 10, 20131093 (2014). PubMed PMC
Rovatsos M., Vukić J., Lymberakis P. & Kratochvíl L. Evolutionary stability of sex chromosomes in snakes. Proc R Soc B 282, 20151992. (2015). PubMed PMC
Rovatsos M., Vukić J. & Kratochvíl L. Mammalian X homolog acts as sex chromosome in lacertid lizards. Heredity 117, 8–13 (2016). PubMed PMC
Rovatsos M. et al.. Conservation of sex chromosomes in lacertid lizards. Mol Ecol 25, 3120–3126 (2016). PubMed
Olmo E. & Signorino G. G. Chromorep: a reptile chromosomes database. Available at http://ginux.univpm.it/scienze/chromorep (Accessed 29 July 2016).(2005)
Altmanová M., Rovatsos M., Kratochvíl L. & Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata:Iguania:Opluridae). Biol J Linn Soc 118, 618–633 (2016).
Alföldi J. et al.. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477, 587–591 (2011). PubMed PMC
Badenhorst D., Stanyon R., Engstrom T. & Valenzuela N. A ZZ/ZW microchromosome system in the spiny softshell turtle, Apalone spinifera, reveals an intriguing sex chromosome conservation in Trionychidae. Chromosome Res 21, 137–147 (2013). PubMed
Vicoso B., Emerson J. J., Zektser Y., Mahajan S. & Bachtrog D. Comparative sex chromosome genomics in snakes: differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol 11, e1001643 (2013). PubMed PMC
Wang Z. et al.. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nature Genet 45, 701–706 (2013). PubMed PMC
Georges A. et al.. High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps. GigaScience 54, 45 (2015). PubMed PMC
Hirayama R., Brinkman D. B. & Danilov I. G. Distribution and biogeography of non-marine Cretaceous turtles. Russ J Herpetol 7, 181–198 (2000).
Joyce W. G. & Lyson T. R. A neglected lineage of North American turtles fills a major gap in the fossil record. Paleontology 53, 241–248 (2010).
Vitek J. & Joyce W. A review of the fossil record of New World turtles of the clade Pan-Trionychidae. Bull Peabody Mus Nat Hist 56, 185–244 (2015).
Uetz P. & Hosek J. eds. The Reptile Database. Available at http://www.reptile-database.org. (Accessed 29 July 2016) (2016).
IUCN red list of threatened species version 2016-2. Available at http://www.iucnredlist.org. (Accessed 13 September 2016) (2016).
Praschag P., Hundsdorfer A. K., Reza A. H. M. A. & Fritz U. Genetic evidence for wild- living Aspideretes nigricans and molecular phylogeny of South Asian softshell turtles (Reptilia: Trionychidae: Aspideretes, Nilssonia). Zool Scri 36, 301–310 (2007).
Liebing N. et al.. Molecular phylogeny of the softshell turtle genus Nilssonia revisited, with first records of N. formosa for China and wild-living N. nigricans for Bangladesh. Vert Zool 62, 261–272 (2012).
Kundu S., Laskar B. A., Venkataraman K., Banerjee D. & Kumar V. DNA barcoding of Nilssonia congeners corroborates existence of wild N. nigricans in northeast India. Mitochondr DNA 27, 2753–2756 (2016). PubMed
Kawai A. et al.. Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet Genome Res 117, 92–102 (2007). PubMed
Kawagoshi T. et al.. The ZW micro-sex chromosomes of the chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae, Testudines) have the same origin as chicken chromosome 15. Cytogenet Genome Res 125, 125–131 (2009). PubMed
Dornburg A., Beaulieu J. M., Oliver J. C. & Near T. J. Integrating fossil preservation biases in the selection of calibrations for molecular divergence time estimation. Syst Biol 60, 519–527 (2011). PubMed
Le M. et al.. A phylogeny of softshell turtles (Testudines: Trionychidae) with reference to the taxonomic status of the critically endangered, giant softshell turtle, Rafetus swinhoei. Org Divers Evol 14, 279–293 (2014).
Georges A. Thermal-characteristics and sex determination in field nests of the pig-nosed turtle, Carettochelys insculpta (Chelonia, Carettochelydidae), from Northern Australia. Aust J Zool 40, 511–521 (1992).
Literman R., Badenhorst D. & Valenzuela N. qPCR-based molecular sexing by copy number variation in rRNA genes and its utility for sex identification in soft-shell turtles. Methods Ecol Evol 5, 872–880 (2014).
Lourenco J. M., Claude J., Galtier N. & Chiari Y. Dating cryptodiran nodes: origin and diversification of the turtle superfamily Testudinoidea. Mol Phyl Evol 62, 496–507 (2012). PubMed
Engstrom T. N., Shaffer H. B. & McCord W. P. Multiple data sets, high homoplasy, and the phylogeny of softshell turtles (Testudines: Trionychidae). Syst Biol 53, 693–710 (2004). PubMed
Gamble T., Geneva A. J., Glor R. E. & Zarkower D. Anolis sex chromosomes are derived from a single ancestral pair. Evolution 68, 1027–1041 (2014). PubMed PMC
Montiel E. E. et al.. Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles. Chromosoma, in press (2016). PubMed
Kuroiwa A. et al.. Additional copies of CBX2 in the genomes of males of mammals lacking SRY, the Amami spiny rat (Tokudaia osimensis) and the Tokunoshima spiny rat (Tokudaia tokunoshimensis). Chromosome Res 19, 635–644 (2011). PubMed
Murata C., Yamada F., Kawauchi N., Matsuda Y. & Kuroiwa A. The Y chromosome of the Okinawa spiny rat, Tokudaia muenninki, was rescued through fusion with an autosome. Chromosome Res 20, 111–25 (2012). PubMed
Zurita F. et al.. Interchromosomal, intercellular and interindividual variability of NORs studied with silver staining and in situ hybridization. Heredity 78, 229–234 (1997). PubMed
Gornung E. et al.. Comparative cytogenetic study of two sister species of Iberian ground voles, Microtus (Terricola) duodecimcostatus and M. (T.) lusitanicus (Rodentia, Cricetidae). Cytogenet Genome Res 132, 144–150 (2011). PubMed
Rovatsos M. T. et al.. Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res 19, 869–882 (2011). PubMed
Rovatsos M. T. et al.. Molecular and physical characterization of the complex pericentromeric heterochromatin of the vole species Microtus thomasi. Cytogenet Genome Res 144, 131–141 (2014). PubMed
Matsubara K. et al.. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma 125, 111–123 (2016). PubMed
Ernst C. H. & Lovich J. E. Turtles of the United States and Canada, 2nd edition John Hopkins University Press, Baltimore, MD (2009).
Ye J. et al.. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13, 134 (2012). PubMed PMC
Praschag P., Stuckas H., Packert M., Maran J. & Fritz U. (2011) Mitochondrial DNA sequences suggest a revised taxonomy of Asian flap shell turtles (Lissemys Smith, 1931) and the validity of previously unrecognized taxa (Testudines: Trionychidae). Vert Zool 61, 147–160.
Cytogenetic Analysis of Seven Species of Gekkonid and Phyllodactylid Geckos
Sex chromosome evolution among amniotes: is the origin of sex chromosomes non-random?
Cytogenetically Elusive Sex Chromosomes in Scincoidean Lizards
Cytogenetic Evidence for Sex Chromosomes and Karyotype Evolution in Anguimorphan Lizards
Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation
Cytogenetic Analysis of the Asian Box Turtles of the Genus Cuora (Testudines, Geoemydidae)
Interstitial Telomeric Repeats Are Rare in Turtles
Evolutionary Variability of W-Linked Repetitive Content in Lacertid Lizards