• Je něco špatně v tomto záznamu ?

Deep Learning-Based Diagnosis of Fatal Hypothermia Using Post-Mortem Computed Tomography

Y. Zeng, X. Zhang, I. Yoshizumi, Z. Zhang, T. Mizuno, S. Sakamoto, Y. Kawasumi, A. Usui, K. Ichiji, I. Bukovsky, M. Funayama, N. Homma

. 2023 ; 260 (3) : 253-261. [pub] 20230518

Jazyk angličtina Země Japonsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc23016877

In forensic medicine, fatal hypothermia diagnosis is not always easy because findings are not specific, especially if traumatized. Post-mortem computed tomography (PMCT) is a useful adjunct to the cause-of-death diagnosis and some qualitative image character analysis, such as diffuse hyperaeration with decreased vascularity or pulmonary emphysema, have also been utilized for fatal hypothermia. However, it is challenging for inexperienced forensic pathologists to recognize the subtle differences of fatal hypothermia in PMCT images. In this study, we developed a deep learning-based diagnosis system for fatal hypothermia and explored the possibility of being an alternative diagnostic for forensic pathologists. An in-house dataset of forensic autopsy proven samples was used for the development and performance evaluation of the deep learning system. We used the area under the receiver operating characteristic curve (AUC) of the system for evaluation, and a human-expert comparable AUC value of 0.905, sensitivity of 0.948, and specificity of 0.741 were achieved. The experimental results clearly demonstrated the usefulness and feasibility of the deep learning system for fatal hypothermia diagnosis.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc23016877
003      
CZ-PrNML
005      
20231026105508.0
007      
ta
008      
231013s2023 ja f 000 0|eng||
009      
AR
024    7_
$a 10.1620/tjem.2023.J041 $2 doi
035    __
$a (PubMed)37197944
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ja
100    1_
$a Zeng, Yuwen $u Department of Intelligent Biomedical Systems Engineering, Graduate School of Biomedical Engineering, Tohoku University
245    10
$a Deep Learning-Based Diagnosis of Fatal Hypothermia Using Post-Mortem Computed Tomography / $c Y. Zeng, X. Zhang, I. Yoshizumi, Z. Zhang, T. Mizuno, S. Sakamoto, Y. Kawasumi, A. Usui, K. Ichiji, I. Bukovsky, M. Funayama, N. Homma
520    9_
$a In forensic medicine, fatal hypothermia diagnosis is not always easy because findings are not specific, especially if traumatized. Post-mortem computed tomography (PMCT) is a useful adjunct to the cause-of-death diagnosis and some qualitative image character analysis, such as diffuse hyperaeration with decreased vascularity or pulmonary emphysema, have also been utilized for fatal hypothermia. However, it is challenging for inexperienced forensic pathologists to recognize the subtle differences of fatal hypothermia in PMCT images. In this study, we developed a deep learning-based diagnosis system for fatal hypothermia and explored the possibility of being an alternative diagnostic for forensic pathologists. An in-house dataset of forensic autopsy proven samples was used for the development and performance evaluation of the deep learning system. We used the area under the receiver operating characteristic curve (AUC) of the system for evaluation, and a human-expert comparable AUC value of 0.905, sensitivity of 0.948, and specificity of 0.741 were achieved. The experimental results clearly demonstrated the usefulness and feasibility of the deep learning system for fatal hypothermia diagnosis.
650    _2
$a lidé $7 D006801
650    12
$a deep learning $7 D000077321
650    12
$a hypotermie $x diagnostické zobrazování $7 D007035
650    _2
$a soudní patologie $x metody $7 D049429
650    _2
$a počítačová rentgenová tomografie $x metody $7 D014057
650    _2
$a pitva $x metody $7 D001344
650    _2
$a příčina smrti $7 D002423
655    _2
$a časopisecké články $7 D016428
700    1_
$a Zhang, Xiaoyong $u National Institute of Technology, Sendai College $u Institute of Development, Aging and Cancer, Tohoku University
700    1_
$a Yoshizumi, Issei $u Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine
700    1_
$a Zhang, Zhang $u Department of Intelligent Biomedical Systems Engineering, Graduate School of Biomedical Engineering, Tohoku University
700    1_
$a Mizuno, Taihei $u Department of Management Science and Technology, Graduate School of Engineering, Tohoku University
700    1_
$a Sakamoto, Shota $u Department of Management Science and Technology, Graduate School of Engineering, Tohoku University
700    1_
$a Kawasumi, Yusuke $u Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine
700    1_
$a Usui, Akihito $u Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine
700    1_
$a Ichiji, Kei $u Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine
700    1_
$a Bukovsky, Ivo $u Faculty of Science, University of South Bohemia in Ceske Budejovice $u Faculty of Mechanical Engineering, Czech Technical University in Prague
700    1_
$a Funayama, Masato $u Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine
700    1_
$a Homma, Noriyasu $u Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine
773    0_
$w MED00010689 $t The Tohoku journal of experimental medicine $x 1349-3329 $g Roč. 260, č. 3 (2023), s. 253-261
856    41
$u https://pubmed.ncbi.nlm.nih.gov/37197944 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20231013 $b ABA008
991    __
$a 20231026105502 $b ABA008
999    __
$a ok $b bmc $g 2000417 $s 1203239
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2023 $b 260 $c 3 $d 253-261 $e 20230518 $i 1349-3329 $m Tohoku journal of experimental medicine $n Tohoku J Exp Med $x MED00010689
LZP    __
$a Pubmed-20231013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...