Mammalian X homolog acts as sex chromosome in lacertid lizards
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26980341
PubMed Central
PMC4901352
DOI
10.1038/hdy.2016.18
PII: hdy201618
Knihovny.cz E-zdroje
- MeSH
- genová dávka MeSH
- ještěři genetika MeSH
- lidé MeSH
- mapování chromozomů MeSH
- molekulární evoluce * MeSH
- pohlavní chromozomy * MeSH
- savci genetika MeSH
- stanovení celkové genové exprese MeSH
- transkriptom MeSH
- výpočetní biologie metody MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Among amniotes, squamate reptiles are especially variable in their mechanisms of sex determination; however, based largely on cytogenetic data, some lineages possess highly evolutionary stable sex chromosomes. The still very limited knowledge of the genetic content of squamate sex chromosomes precludes a reliable reconstruction of the evolutionary history of sex determination in this group and consequently in all amniotes. Female heterogamety with a degenerated W chromosome typifies the lizards of the family Lacertidae, the widely distributed Old World clade including several hundreds of species. From the liver transcriptome of the lacertid Takydromus sexlineatus female, we selected candidates for Z-specific genes as the loci lacking single-nucleotide polymorphisms. We validated the candidate genes through the comparison of the copy numbers in the female and male genomes of T. sexlineatus and another lacertid species, Lacerta agilis, by quantitative PCR that also proved to be a reliable technique for the molecular sexing of the studied species. We suggest that this novel approach is effective for the detection of Z-specific and X-specific genes in lineages with degenerated W, respectively Y chromosomes. The analyzed gene content of the Z chromosome revealed that lacertid sex chromosomes are not homologous with those of other reptiles including birds, but instead the genes have orthologs in the X-conserved region shared by viviparous mammals. It is possible that this part of the vertebrate genome was independently co-opted for the function of sex chromosomes in viviparous mammals and lacertids because of its content of genes involved in gonad differentiation.
Zobrazit více v PubMed
Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E et al. (2011). The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477: 587–591. PubMed PMC
Andres C, Franke F, Bleidorn C, Bernhard D, Schlegel M. (2014). Phylogenetic analysis of the Lacerta agilis subspecies complex. Syst Biodivers 12: 43–54.
Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL et al. (2014). Sex determination: why so many ways of doing it? PLoS Biol 12: e1001899. PubMed PMC
Danielyan F, Arakelyan M, Stepanyan I. (2008). Hybrids of Darevskia valentiniD. armeniaca and D. unisexualis from a sympatric population in Armenia. Amphibia-Reptilia 29: 487–504.
Delgado CLR, Waters PD, Gilbert C, Robinson TJ, Graves JAM. (2009). Physical mapping of the elephant X chromosome: conservation of gene order over 105 million years. Chromosome Res 17: 917–926. PubMed
Eckalbar WL, Hutchins ED, Markov GJ, Allen AN, Corneveaux JC, Lindblad-Toh K et al. (2013). Genome reannotation of the lizard Anolis carolinensis based on 14 adult and embryonic deep transcriptomes. BMC Genomics 14: 49. PubMed PMC
Fujii J, Kodama M, Oike A, Matsuo Y, Min M-S, Hasebe T et al. (2014). Involvement of androgen receptor in sex determination in an amphibian species. PLoS One 9: e93655. PubMed PMC
Gamble T, Geneva AJ, Glor RE, Zarkower D. (2014). Anolis sex chromosomes are derived from a single ancestral pair. Evolution 68: 1027–1041. PubMed PMC
Gamble T, Coryell J, Ezaz T, Lynch J, Scantlebury DP, Zarkower D. (2015). Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol Biol Evol 32: 1296–1309. PubMed
Gullberg A, Olsson M, Tegelström H. (1998). Colonization, genetic diversity, and evolution in the Swedish sand lizard, Lacerta agilis (Reptilia, Squamata). Biol J Linn Soc 65: 257–277.
Holleley CE, O'Meally D, Sarre SD, Marshall Graves JAM, Ezaz T, Matsubara K et al. (2015). Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature 523: 79–82. PubMed
Johnson Pokorná M, Kratochvíl L. (2016). What was the ancestral sex-determining mechanism in amniote vertebrates? Biol Rev 91: 1–12. PubMed
Johnson Pokorná M, Trifonov VA, Rens W, Ferguson-Smith MA, Kratochvíl L. (2015). Low rate of interchromosomal rearrangements during old radiation of gekkotan lizards (Squamata: Gekkota). Chromosome Res 23: 299–309. PubMed
Kawagoshi T, Nishida C, Matsuda Y. (2012). The origin and differentiation process of X and Y chromosomes of the black marsh turtle (Siebenrockiella crassicollis, Geoemydidae, Testudines). Chromosome Res 20: 95–110. PubMed
Kawagoshi T, Uno Y, Nishida C, Matsuda Y. (2014). The Staurotypus turtles and aves share the same origin of sex chromosomes but evolved different types of heterogametic sex determination. PLoS One 9: e105315. PubMed PMC
Kawai A, Ishijima J, Nishida C, Kosaka A, Ota H, Kohno SI et al. (2009). The ZW sex chromosomes of Gekko hokouensis (Gekkonidae, Squamata) represent highly conserved homology with those of avian species. Chromosoma 118: 43–51. PubMed
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. PubMed PMC
Kikuchi K, Hamaguchi S. (2013). Novel sex-determining genes in fish and sex chromosome evolution. Dev Dyn 242: 339–353. PubMed
Kohn M, Kehrer-Sawatzki H, Vogel W, Graves JAM, Hameister H. (2004). Wide genome comparisons reveal the origins of the human X chromosome. Trends Genet 20: 598–603. PubMed
Lambeth LS, Raymond CS, Roeszler KN, Kuroiwa A, Nakata T, Zarkower D et al. (2014). Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads. Dev Biol 389: 160–172. PubMed PMC
Literman R, Badenhorst D, Valenzuela N. (2014). qPCR-based molecular sexing by copy number variation in rRNA genes and its utility for sex identification in soft-shell turtles. Methods Ecol Evol 9: 872–880.
Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara C, Agata K et al. (2006). Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc Natl Acad Sci USA 103: 18190–18195. PubMed PMC
Mácha J, Teichmanová R, Sater AK, Wells DE, Tlapáková T, Zimmerman LB et al. (2012). Deep ancestry of mammalian X chromosome revealed by comparison with the basal tetrapod Xenopus tropicalis. BMC Genomics 13: 315. PubMed PMC
Nguyen P, Sýkorová M, Šíchová J, Kůta V, Dalíková M, Čapková Frydrychová R et al. (2013). Neo-sex chromosomes and adaptive potential in tortricid pests. Proc Natl Acad Sci USA 110: 6931–6936. PubMed PMC
Odierna G, Olmo E, Cobror O. (1985). C-band variability in some Lacertidae (Sauria, Reptilia). Experientia 41: 944–946.
Olmo E, Signorino GG. (2005). Chromorep: a reptile chromosomes database. Retrieved from http://chromorep.univpm.it (Accessed 21 March 2015).
Olmo E, Cobror O, Morescalchi G. (1984). Homomorphic sex chromosomes in the lacertid lizard Takydromus sexlineatus. Heredity 53: 457–459.
Olmo E, Odierna G, Cobror O. (1986). C-band variability and phylogeny of Lacertidae. Genetica 71: 63–74.
O'Meally D, Ezaz T, Georges A, Sarre SD, Graves JAM. (2012). Are some chromosomes particularly good at sex? Insights from amniotes. Chromosome Res 20: 7–19. PubMed
Pokorná M, Kratochvíl L. (2009). Phylogeny of sex-determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zool J Linn Soc 156: 168–183.
Pokorná M, Giovannotti M, Kratochvíl L, Kasai F, Trifonov VA, O'Brien PC et al. (2011. a). Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma 120: 455–468. PubMed
Pokorná M, Kratochvíl L, Kejnovský E. (2011. b). Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox. BMC Genetics 12: 90. PubMed PMC
Pokorná M, Giovannotti M, Kratochvíl L, Caputo V, Olmo E, Ferguson-Smith MA et al. (2012). Conservation of chromosomes syntenic with avian autosomes in squamate reptiles revealed by comparative chromosome painting. Chromosoma 121: 409–418. PubMed
Pyron RA, Burbrink FT, Wiens JJ. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol 13: 93. PubMed PMC
Quinn AE, Georges A, Sarre SD, Guarino F, Ezaz T, Graves JAM. (2007). Temperature sex reversal implies sex gene dosage in a reptile. Science 316: 411. PubMed
Rens W, O'Brien PC, Grutzner F, Clarke O, Graphodatskaya D, Tsend-Ayush E et al. (2007). The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z. Genome Biol 8: R243. PubMed PMC
Rovatsos M, Pokorná M, Altmanová M, Kratochvíl L. (2014. a). Cretaceous park of sex determination: sex chromosomes are conserved across iguanas. Biol Lett 10: 20131093. PubMed PMC
Rovatsos M, Altmanová M, Pokorná M, Kratochvíl L. (2014. b). Conserved sex chromosomes across adaptively radiated Anolis lizards. Evolution 68: 2079–2085. PubMed
Rovatsos M, Altmanova M, Pokorna MJ, Kratochvil L. (2014. c). Novel X-lnked genes revealed by quantitative polymerase chain reaction in the green anole, Anolis carolinensis. G3 (Bethesda) 4: 2107–2113. PubMed PMC
Rovatsos M, Vukić J, Lymberakis P, Kratochvíl L. (2015). Evolutionary stability of sex chromosomes in snakes. Proc R Soc B 282: 20151992. PubMed PMC
Shabsovich D, Tirado CA. (2014). Genes, chromosomes, and disorders of sex development: an update. J Assoc Genet Technol 40: 124–140. PubMed
Smeds L, Kawakami T, Burri R, Bolivar P, Husby A, Qvarnström A et al. (2014). Genomic identification and characterization of the pseudoautosomal region in highly differentiated avian sex chromosomes. Nat Commun 5: 5448. PubMed PMC
Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ et al. (2009). The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461: 267–271. PubMed
Srikulnath K, Matsubara K, Uno Y, Nishida C, Olsson M, Matsuda Y. (2014). Identification of the linkage group of the Z sex chromosomes of the sand lizard (Lacerta agilis, Lacertidae) and elucidation of karyotype evolution in lacertid lizards. Chromosoma 123: 563–575. PubMed
Takehana Y, Matsuda M, Myosho T, Suster ML, Kawakami K, Shin-I T et al. (2014). Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat Commun 5: 4157. PubMed
Uetz P, Hošek J (eds). (2014) The Reptile Database. Retrieved from http://www.reptile-database.org (Accessed 21 March 2015).
Vicoso B, Emerson JJ, Zektser Y, Mahajan S, Bachtrog D. (2013). Comparative sex chromosome genomics in snakes: differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol 11: e1001643. PubMed PMC
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 134. PubMed PMC
Zhou Q, Zhang J, Bachtrog D, An N, Huang Q, Jarvis ED et al. (2014). Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346: 1246338. PubMed PMC
Zhang J, Li C, Zhou Q, Zhang G. (2015). Improving the ostrich genome assembly using optical mapping data. GigaScience 4: 24. PubMed PMC
Sex chromosome evolution among amniotes: is the origin of sex chromosomes non-random?
Evolutionary Variability of W-Linked Repetitive Content in Lacertid Lizards