Neo-sex chromosomes and adaptive potential in tortricid pests
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
23569222
PubMed Central
PMC3637691
DOI
10.1073/pnas.1220372110
PII: 1220372110
Knihovny.cz E-zdroje
- MeSH
- biologická adaptace genetika MeSH
- fyzikální mapování chromozomů MeSH
- hybridizace in situ fluorescenční MeSH
- molekulární evoluce * MeSH
- molekulární sekvence - údaje MeSH
- můry genetika MeSH
- pohlavní chromozomy genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza DNA MeSH
- translokace genetická genetika MeSH
- umělé bakteriální chromozomy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Changes in genome architecture often have a significant effect on ecological specialization and speciation. This effect may be further enhanced by involvement of sex chromosomes playing a disproportionate role in reproductive isolation. We have physically mapped the Z chromosome of the major pome fruit pest, the codling moth, Cydia pomonella (Tortricidae), and show that it arose by fusion between an ancestral Z chromosome and an autosome corresponding to chromosome 15 in the Bombyx mori reference genome. We further show that the fusion originated in a common ancestor of the main tortricid subfamilies, Olethreutinae and Tortricinae, comprising almost 700 pest species worldwide. The Z-autosome fusion brought two major genes conferring insecticide resistance and clusters of genes involved in detoxification of plant secondary metabolites under sex-linked inheritance. We suggest that this fusion significantly increased the adaptive potential of tortricid moths and thus contributed to their radiation and subsequent speciation.
Zobrazit více v PubMed
Faria R, Navarro A. Chromosomal speciation revisited: Rearranging theory with pieces of evidence. Trends Ecol Evol. 2010;25(11):660–669. PubMed
Lukhtanov VA, Dincă V, Talavera G, Vila R. Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation. BMC Evol Biol. 2011;11:109. PubMed PMC
Butlin RK. Recombination and speciation. Mol Ecol. 2005;14(9):2621–2635. PubMed
Hawthorne DJ, Via S. Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature. 2001;412(6850):904–907. PubMed
Servedio MR. The role of linkage disequilibrium in the evolution of premating isolation. Heredity (Edinb) 2009;102(1):51–56. PubMed
Wiley C, Shaw KL. Multiple genetic linkages between female preference and male signal in rapidly speciating Hawaiian crickets. Evolution. 2010;64(8):2238–2245. PubMed
Merrill RM, Van Schooten B, Scott JA, Jiggins CD. Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies. Proc Biol Sci. 2011;278(1705):511–518. PubMed PMC
Ellegren H. Sex-chromosome evolution: Recent progress and the influence of male and female heterogamety. Nat Rev Genet. 2011;12(3):157–166. PubMed
Presgraves DC. Patterns of postzygotic isolation in Lepidoptera. Evolution. 2002;56(6):1168–1183. PubMed
Presgraves DC. Sex chromosomes and speciation in Drosophila. Trends Genet. 2008;24(7):336–343. PubMed PMC
Kitano J, Peichel CL. Turnover of sex chromosomes and speciation in fishes. Environ Biol Fishes. 2012;94(3):549–558. PubMed PMC
Traut W, Sahara K, Marec F. Sex chromosomes and sex determination in Lepidoptera. Sex Dev. 2007;1(6):332–346. PubMed
Yoshido A, Marec F, Sahara K. Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG)(n) telomeric probe in some species of Lepidoptera. Chromosoma. 2005;114(3):193–202. PubMed
Yoshido A, Sahara K, Marec F, Matsuda Y. Step-by-step evolution of neo-sex chromosomes in geographical populations of wild silkmoths, Samia cynthia ssp. Heredity (Edinb) 2011;106(4):614–624. PubMed PMC
Heckel DG, Bryson PK, Brown TM. Linkage analysis of insecticide-resistant acetylcholinesterase in Heliothis virescens. J Hered. 1998;89:71–78.
Cassanelli S, Reyes M, Rault M, Carlo Manicardi G, Sauphanor B. Acetylcholinesterase mutation in an insecticide-resistant population of the codling moth Cydia pomonella (L.) Insect Biochem Mol Biol. 2006;36(8):642–653. PubMed
Fuková I, et al. Rapid assessment of the sex of codling moth Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) eggs and larvae. J Appl Entomol. 2009;133(4):249–261.
Fuková I, Nguyen P, Marec F. Codling moth cytogenetics: Karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005;48(6):1083–1092. PubMed
Fuková I, et al. Probing the W chromosome of the codling moth, Cydia pomonella, with sequences from microdissected sex chromatin. Chromosoma. 2007;116(2):135–145. PubMed
Regier JC, et al. A molecular phylogeny for the leaf-roller moths (Lepidoptera: Tortricidae) and its implications for classification and life history evolution. PLoS ONE. 2012;7(4):e35574. PubMed PMC
Mutanen M, Wahlberg N, Kaila L. Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc Biol Sci. 2010;277(1695):2839–2848. PubMed PMC
Baxter SW, et al. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS ONE. 2011;6(4):e19315. PubMed PMC
Heliconius Genome Consortium Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature. 2012;487(7405):94–98. PubMed PMC
Van't Hof AE, et al. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): A model of industrial melanism. Heredity (Edinb) 2012;110(3):283–295. PubMed PMC
Gilligan TM, Baixeras J, Brown JW, Tuck KR. T@RTS: Online World Catalogue of the Tortricidae (Ver. 2.0) 2012. Available at www.tortricid.net/catalogue.asp. Accessed February 6, 2013.
Asser-Kaiser S, et al. Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science. 2007;317(5846):1916–1918. PubMed
Eberle KE, Asser-Kaiser S, Sayed SM, Nguyen HT, Jehle JA. Overcoming the resistance of codling moth against conventional Cydia pomonella granulovirus (CpGV-M) by a new isolate CpGV-I12. J Invertebr Pathol. 2008;98(3):293–298. PubMed
Berling M, et al. Cydia pomonella granulovirus genotypes overcome virus resistance in the codling moth and improve virus efficiency by selection against resistant hosts. Appl Environ Microbiol. 2009;75(4):925–930. PubMed PMC
Asser-Kaiser S, Radtke P, El-Salamouny S, Winstanley D, Jehle JA. Baculovirus resistance in codling moth (Cydia pomonella L.) caused by early block of virus replication. Virology. 2011;410(2):360–367. PubMed
Zhang BC. Index of Economically Important Lepidoptera. Wallingford, UK: CAB International; 1994.
Daly JC, Fisk JH. Sex-linked inheritance of endosulphan resistance in Helicoverpa armigera. Heredity (Edinb) 1998;81(1):55–62.
Yuan GR, Gao WY, Yang YH, Wu YD. Molecular cloning, genomic structure, and genetic mapping of two Rdl-orthologous genes of GABA receptors in the diamondback moth, Plutella xylostella. Arch Insect Biochem Physiol. 2010;74(2):81–90. PubMed
Gahan LJ, Pauchet Y, Vogel H, Heckel DG. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet. 2010;6(12):e1001248. PubMed PMC
Baxter SW, et al. Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics. 2011;189(2):675–679. PubMed PMC
Atsumi S, et al. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori. Proc Natl Acad Sci USA. 2012;109(25):E1591–E1598. PubMed PMC
Orr HA. The population genetics of beneficial mutations. Philos Trans R Soc Lond B Biol Sci. 2010;365(1544):1195–1201. PubMed PMC
Bourguet D, et al. Variation of dominance of newly arisen adaptive genes. Genetics. 1997;147(3):1225–1234. PubMed PMC
Harrison PW, Mank JE, Wedell N. Incomplete sex chromosome dosage compensation in the Indian meal moth, Plodia interpunctella, based on de novo transcriptome assembly. Genome Biol Evol. 2012;4(11):1118–1126. PubMed PMC
Kanga LHB, Pree DJ, Plapp FW, van Lier JL. Sex-linked altered acetylcholinesterase resistance to carbamate insecticides in adults of the oriental fruit moth, Grapholita molesta (Lepidoptera:Tortricidae) Pestic Biochem Physiol. 2001;71(1):29–39.
Pala I, et al. Evidence of a neo-sex chromosome in birds. Heredity (Edinb) 2012;108(3):264–272. PubMed PMC
Sorensen JS, Dearing MD. Efflux transporters as a novel herbivore countermechanism to plant chemical defenses. J Chem Ecol. 2006;32(6):1181–1196. PubMed
Li XC, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol. 2007;52:231–253. PubMed
Buss DS, Callaghan A. Interaction of pesticides with p-glycoprotein and other ABC proteins: A survey of the possible importance to insecticide, herbicide and fungicide resistance. Pestic Biochem Physiol. 2008;90(3):141–153.
Zangerl AR, Liao LH, Jogesh T, Berenbaum MR. Aliphatic esters as targets of esterase activity in the parsnip webworm (Depressaria pastinacella) J Chem Ecol. 2012;38(2):188–194. PubMed
Berenbaum MR, Feeny PP. In: Specialization, Speciation and Radiation: The Evolutionary Biology of Herbivorous Insects. Tilmon KJ, editor. Berkeley, CA: Univ California Press; 2008. pp. 3–19.
Yu QY, Lu C, Li WL, Xiang ZH, Zhang Z. Annotation and expression of carboxylesterases in the silkworm, Bombyx mori. BMC Genomics. 2009;10:553. PubMed PMC
Xie X, et al. Genome-wide analysis of the ATP-binding cassette (ABC) transporter gene family in the silkworm, Bombyx mori. Mol Biol Rep. 2012;39(7):7281–7291. PubMed
Shearer PW, Usmani KA. Sex-related response to organophosphorus and carbamate insecticides in adult Oriental fruit moth, Grapholita molesta. Pest Manag Sci. 2001;57(9):822–826. PubMed
de Lame FM, Hong JJ, Shearer PW, Brattsten LB. Sex-related differences in the tolerance of Oriental fruit moth (Grapholita molesta) to organophosphate insecticides. Pest Manag Sci. 2001;57(9):827–832. PubMed
You M, et al. A heterozygous moth genome provides insights into herbivory and detoxification. Nat Genet. 2013;45(2):220–225. PubMed
Thompson JN. Evolutionary genetics of oviposition preference in swallowtail butterflies. Evolution. 1988;42(6):1223–1234. PubMed
Sperling FAH. Sex-linked genes and species-differences in Lepidoptera. Can Entomol. 1994;126(3):807–818.
Prowell DP. In: Endless Forms: Species and Speciation. Howard DJ, Berlocher SH, editors. Oxford: Oxford Univ Press; 1998. pp. 309–319.
Nygren GH, Nylin S, Stefanescu C. Genetics of host plant use and life history in the comma butterfly across Europe: Varying modes of inheritance as a potential reproductive barrier. J Evol Biol. 2006;19(6):1882–1893. PubMed
Matsubayashi KW, Ohshima I, Nosil P. Ecological speciation in phytophagous insects. Entomol Exp Appl. 2010;134(1):1–27.
Li WM, Schuler MA, Berenbaum MR. Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids: Specificity and substrate encounter rate. Proc Natl Acad Sci USA. 2003;100(Suppl 2):14593–14598. PubMed PMC
Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV. Selection in the evolution of gene duplications. Genome Biol. 2002;3:0008.1. PubMed PMC
Bass C, Field LM. Gene amplification and insecticide resistance. Pest Manag Sci. 2011;67(8):886–890. PubMed
Ehrlich PR, Raven PH. Butterflies and plants: A study in coevolution. Evolution. 1964;18(4):586–608.
Mediouni J, Fuková I, Frydrychová R, Dhouibi MH, Marec F. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae) Caryologia. 2004;57(2):184–194.
Yoshido A, Bando H, Yasukochi Y, Sahara K. The Bombyx mori karyotype and the assignment of linkage groups. Genetics. 2005;170(2):675–685. PubMed PMC
Shibata F, Sahara K, Naito Y, Yasukochi Y. Reprobing multicolor FISH preparations in lepidopteran chromosome. Zoolog Sci. 2009;26(3):187–190. PubMed
Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies
Zygosity-based sex determination in a butterfly drives hypervariability of Masculinizer
Large-scale comparative analysis of cytogenetic markers across Lepidoptera
The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths
Advances and Challenges of Using the Sterile Insect Technique for the Management of Pest Lepidoptera
Sex Chromosome Turnover in Moths of the Diverse Superfamily Gelechioidea
GENBANK
JQ771334, JQ771335, JQ771337, JQ771338, JQ771339, JQ771341, JQ771343, JQ771344, JQ771346, JQ771353, JQ771354, JQ771355, JQ771357, JQ771358, JQ771360, JQ771361, JQ771362, JQ771363, JQ771368, JQ771369, JX258662, JX258665, JX258666, JX258667, JX258668, JX307647