Absence of W Chromosome in Psychidae Moths and Implications for the Theory of Sex Chromosome Evolution in Lepidoptera
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31817557
PubMed Central
PMC6947638
DOI
10.3390/genes10121016
PII: genes10121016
Knihovny.cz E-zdroje
- Klíčová slova
- Lepidoptera, Psychidae, W chromosome, Z chromosome, comparative genomic hybridization, evolution, flow cytometry, genome size, sex chromatin, sex chromosome,
- MeSH
- chromozomy hmyzu genetika metabolismus MeSH
- fylogeneze * MeSH
- genom hmyzu * MeSH
- můry klasifikace genetika metabolismus MeSH
- pohlavní chromozomy metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Moths and butterflies (Lepidoptera) are the largest group with heterogametic females. Although the ancestral sex chromosome system is probably Z0/ZZ, most lepidopteran species have the W chromosome. When and how the W chromosome arose remains elusive. Existing hypotheses place the W origin either at the common ancestor of Ditrysia and Tischeriidae, or prefer independent origins of W chromosomes in these two groups. Due to their phylogenetic position at the base of Ditrysia, bagworms (Psychidae) play an important role in investigating the W chromosome origin. Therefore, we examined the W chromosome status in three Psychidae species, namely Proutiabetulina, Taleporiatubulosa, and Diplodomalaichartingella, using both classical and molecular cytogenetic methods such as sex chromatin assay, comparative genomic hybridization (CGH), and male vs. female genome size comparison by flow cytometry. In females of all three species, no sex chromatin was found, no female-specific chromosome regions were revealed by CGH, and a Z-chromosome univalent was observed in pachytene oocytes. In addition, the genome size of females was significantly smaller than males. Overall, our study provides strong evidence for the absence of the W chromosome in Psychidae, thus supporting the hypothesis of two independent W chromosome origins in Tischeriidae and in advanced Ditrysia.
Zobrazit více v PubMed
Traut W., Sahara K., Marec F. Sex chromosomes and sex determination in Lepidoptera. Sex. Dev. 2007;1:332–346. doi: 10.1159/000111765. PubMed DOI
Beldade P., Saenko S.V., Pul N., Long A.D. A Gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome. PLoS Genet. 2009;5:e1000366. doi: 10.1371/journal.pgen.1000366. PubMed DOI PMC
Van’t Hof A.E., Nguyen P., Dalíková M., Edmonds N., Marec F., Saccheri I.J. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): A model of industrial melanism. Heredity. 2013;110:283–295. doi: 10.1038/hdy.2012.84. PubMed DOI PMC
Fraïsse C., Picard M.A.L., Vicoso B. The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nat. Commun. 2017;8:1486. doi: 10.1038/s41467-017-01663-5. PubMed DOI PMC
Dalíková M., Zrzavá M., Hladová I., Nguyen P., Šonský I., Flegrová M., Kubíčková S., Voleníková A., Kawahara A.Y., Peters R.S., et al. New insights into the evolution of the W chromosome in Lepidoptera. J. Hered. 2017;108:709–719. doi: 10.1093/jhered/esx063. PubMed DOI
Marec F., Sahara K., Traut W. Rise and fall of the W chromosome in Lepidoptera. In: Goldsmith M.R., Marec F., editors. Molecular Biology and Genetics of the Lepidoptera. 1st ed. CRC Press; Boca Raton, FL, USA: 2009.
Traut W., Mosbacher G.C. Geschlechtschromatin bei Lepidopteren. Chromosoma. 1968;25:343–356. doi: 10.1007/BF01183125. PubMed DOI
Ennis T.J. Sex chromatin and chromosome numbers in Lepidoptera. Can. J. Genet. Cytol. 1976;18:119–130. doi: 10.1139/g76-017. PubMed DOI
Traut W., Marec F. Sex chromatin in Lepidoptera. Q. Rev. Biol. 1996;71:239–256. doi: 10.1086/419371. PubMed DOI
Vlašánek P., Bartoňová A., Marec F., Konvička M. Elusive Parnassius mnemosyne (Linnaeus, 1758) larvae: Habitat selection, sex determination and sex ratio (Lepidoptera: Papilionidae) SHILAP Rev. Lepidopterol. 2017;45:561–569.
Traut W., Marec F. Sex chromosome differentiation in some species of Lepidoptera (Insecta) Chromosome Res. 1997;5:283–291. doi: 10.1023/B:CHRO.0000038758.08263.c3. PubMed DOI
Lukhtanov V.A. Sex chromatin and sex chromosome systems in nonditrysian Lepidoptera (Insecta) J. Zool. Syst. Evol. Res. 2000;38:73–79. doi: 10.1046/j.1439-0469.2000.382130.x. DOI
Sahara K., Yoshido A., Traut W. Sex chromosome evolution in moths and butterflies. Chromosome Res. 2012;20:83–94. doi: 10.1007/s10577-011-9262-z. PubMed DOI
Seiler J. Researches on the sex-chromosomes of Psychidæ (Lepidoptera) Biol. Bull. 1919;36:399–404. doi: 10.2307/1536220. DOI
Seiler J. Geschlechtschromosomen-Untersuchungen an Psychiden. Z. Indukt. Abstamm. Vererbungsl. 1922;31:1–99. doi: 10.1007/BF01937625. (In German) DOI
Seiler J. Untersuchungen über die Entstehung der Parthenogenese bei Solenobia triquetrella F.R. II. Analyse der diploid parthenogenetischen Solenobia triquetrella F.R. (Lepidoptera, Psychidae) Chromosoma. 1960;11:29–102. doi: 10.1007/BF00328647. (In German) PubMed DOI
Narbel-Hofstetter M. Cytologie comparée de l’espèce parthénogénétique Luffia ferchaultella Steph. et de l’espèce bisexuée L. Lapidella goeze (Lepidoptera, Psychidae) Chromosoma. 1961;15:505–552. doi: 10.1007/BF00328941. (In French) PubMed DOI
Narbel M. La Cytologie de la parthenogénèse chez Apterona helix Sieb. Rev. Suisse Zool. 1946;53:625–681. doi: 10.1007/BF00325767. (In French) PubMed DOI
Nilsson N., ’Löfstedt C., Dävring L. Unusual sex chromosome inheritance in six species of small ermine moths (Yponomeuta, Yponomeutidae, Lepidoptera) Hereditas. 2008;108:259–265. doi: 10.1111/j.1601-5223.1988.tb00311.x. DOI
Rishi S., Sahni G., Rishi K.K. Inheritance of unusual sex chromosome evidenced by AAWZ sex trivalent in Trabala vishnu (Lasiocampidae, Lepidoptera) Cytobios. 1999;394:85–94.
Yoshido A., Marec F., Sahara K. Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG)n telomeric probe in some species of Lepidoptera. Chromosoma. 2005;114:193–202. doi: 10.1007/s00412-005-0013-9. PubMed DOI
Marec F., Traut W. Sex chromosome pairing and sex chromatin bodies in W-Z translocation strains of Ephestia kuehniella (Lepidoptera) Genome. 1994;37:426–435. doi: 10.1139/g94-060. PubMed DOI
Lindsley D.L., Zimm G.G. The Genome of Drosophila Melanogaster. Academic Press; San Diego, CA, USA: 1992.
Glaser R.W. The growth of insect blood cells in vitro. Psyche. 1917;24:1–7. doi: 10.1155/1917/67649. DOI
Dalíková M., Zrzavá M., Kubíčková S., Marec F. W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae) Chromosome Res. 2017;25:241–252. doi: 10.1007/s10577-017-9558-8. PubMed DOI
Mediouni J., Fuková I., Frydrychová R., Dhouibi M.H., Marec F. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae) Caryologia. 2004;57:184–194. doi: 10.1080/00087114.2004.10589391. DOI
Traut W., Eickhof U., Schorch J.C. Identification and analysis of sex chromosomes by comparative genomic hybridization (CGH) Methods Cell Sci. 2001;23:155–161. doi: 10.1023/A:1013138925996. PubMed DOI
Kato A., Albert P.S., Vega J.M., Birchler J.A. Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech. Histochem. 2006;81:71–78. doi: 10.1080/10520290600643677. PubMed DOI
Buntrock L., Marec F., Krueger S., Traut W. Organ growth without cell division: Somatic polyploidy in a moth, Ephestia kuehniella. Genome. 2012;55:755–763. doi: 10.1139/g2012-060. PubMed DOI
Gregory T.R., Johnston J.S. Genome size diversity in the family Drosophilidae. Heredity. 2008;101:228–238. doi: 10.1038/hdy.2008.49. PubMed DOI
Seiler J. Studies on the origin of parthenogenesis in Solenobia triquetrella F.R. (Lepidoptera, Psychidae) Chromosoma. 1965;16:463–476. doi: 10.1007/BF00343174. PubMed DOI
Seiler J. Vergleich des Fuhlers der reinen Geschlechter und der triploiden Intersexe von Solenobia triquetrella. Mol. Gen. Genet. 1972;115:146–194. doi: 10.1007/BF00277295. DOI
Suomalainen E. On the sex chromosome trivalent in some Lepidoptera females. Chromosoma. 1969;28:298–308. doi: 10.1007/BF00284928. DOI
Traut W., Weith A., Traut G. Structural mutants of the W chromosome in Ephestia (Insecta, Lepidoptera) Genetica. 1986;70:69–79. doi: 10.1007/BF00123216. DOI
Šíchová J., Voleníková A., Dincă V., Nguyen P., Vila R., Sahara K., Marec F. Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evol. Biol. 2015;15:89. doi: 10.1186/s12862-015-0375-4. PubMed DOI PMC
Robinson R. Lepidoptera genetics. In: Kerkut G.A., editor. International Series of Monographs in Pure and Applied Biology. 1st ed. Pergamon Press; Oxford, UK: 1970.
Seiler J. Untersuchungen über die Entstehung der Parthenogenese bei Solenobia triquetrella F.R. Chromosoma. 1959;10:73–114. doi: 10.1007/BF00396565. PubMed DOI
Nguyen P., Sýkorová M., Šíchová J., Kůta V., Dalíková M., Čapková Frydrychová R., Neven L.G., Sahara K., Marec F. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl. Acad. Sci. USA. 2013;110:6931–6936. doi: 10.1073/pnas.1220372110. PubMed DOI PMC
Nguyen P., Carabajal Paladino L. On the neo-sex chromosomes of Lepidoptera. In: Pontarotti P., editor. Evolutionary Biology: Convergent Evolution, Evolution of Complex Traits, Concepts and Methods. 1st ed. Springer International Publishing; Cham, Switzerland: 2016.
Mongue A.J., Nguyen P., Voleníková A., Walters J.R. Neo-sex chromosomes in the monarch butterfly, Danaus plexippus. G3 Genes Genomes Genet. 2017;7:3281–3294. doi: 10.1534/g3.117.300187. PubMed DOI PMC
Regier J.C., Mitter C., Kristensen N.P., Davis D.R., van Nieukerken E.J., Rota J., Simonsen T.J., Mitter K.T., Kawahara A.Y., Yen S., et al. A molecular phylogeny for the oldest (nonditrysian) lineages of extant Lepidoptera, with implications for classification, comparative morphology and life-history evolution. Syst. Entomol. 2015;40:671–704. doi: 10.1111/syen.12129. DOI
Mutanen M., Wahlberg N., Kaila L. Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc. R. Soc. B. 2010;277:2839–2848. doi: 10.1098/rspb.2010.0392. PubMed DOI PMC
Regier J.C., Mitter C., Zwick A., Bazinet A.L., Cummings M.P., Kawahara A.Y., Sohn J.-C., Zwickl D.J., Cho S., Davis D.R., et al. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies) PLoS ONE. 2013;8:e58568. doi: 10.1371/journal.pone.0058568. PubMed DOI PMC
Bazinet A., Mitter K., Davis D., Nieukerken E., Cummings M., Mitter C. Phylotranscriptomics resolves ancient divergences in the Lepidoptera. Syst. Entomol. 2017;42:305–316. doi: 10.1111/syen.12217. DOI
Seiler J. Sexuality as a developmental process. Proc. 11th Inter. Congr. Genet. 1964;2:199–207.
Narbel-Hofstetter M. La cytologie de la parthénogénèse chez Luffia ferchaultella Stph. (Lépid. Psychide). Communication préliminaire. Rev. Suisse Zool. 1954;61:416–419. doi: 10.5962/bhl.part.75397. DOI
Narbel-Hofstetter M. Cytologie de la pseudogamie chez Luffia lapidella GOEZE (Lepidoptera, Psychidae) Chromosoma. 1963;13:623–645. doi: 10.1007/BF00325982. PubMed DOI
Narbel M. La Cytologie de la parthenogénèse chez une Psychide: Apterona helix. Arch. Klaus. Stift. Vererb. Forsch. 1946;20:473–475. (In French)
Evolution of B Chromosomes: From Dispensable Parasitic Chromosomes to Essential Genomic Players
Large-scale comparative analysis of cytogenetic markers across Lepidoptera
The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths