Genome sequence and silkomics of the spindle ermine moth, Yponomeuta cagnagella, representing the early diverging lineage of the ditrysian Lepidoptera
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36418465
PubMed Central
PMC9684489
DOI
10.1038/s42003-022-04240-9
PII: 10.1038/s42003-022-04240-9
Knihovny.cz E-zdroje
- MeSH
- genomika MeSH
- hedvábí genetika MeSH
- kukla MeSH
- můry * genetika MeSH
- proteom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hedvábí MeSH
- proteom MeSH
Many lepidopteran species produce silk, cocoons, feeding tubes, or nests for protection from predators and parasites for caterpillars and pupae. Yet, the number of lepidopteran species whose silk composition has been studied in detail is very small, because the genes encoding the major structural silk proteins tend to be large and repetitive, making their assembly and sequence analysis difficult. Here we have analyzed the silk of Yponomeuta cagnagella, which represents one of the early diverging lineages of the ditrysian Lepidoptera thus improving the coverage of the order. To obtain a comprehensive list of the Y. cagnagella silk genes, we sequenced and assembled a draft genome using Oxford Nanopore and Illumina technologies. We used a silk-gland transcriptome and a silk proteome to identify major silk components and verified the tissue specificity of expression of individual genes. A detailed annotation of the major genes and their putative products, including their complete sequences and exon-intron structures is provided. The morphology of silk glands and fibers are also shown. This study fills an important gap in our growing understanding of the structure, evolution, and function of silk genes and provides genomic resources for future studies of the chemical ecology of Yponomeuta species.
Department of Ecology and Evolutionary Biology University of Kansas Lawrence USA
European Molecular Biology Laboratory Heidelberg Germany
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
Institute of Molecular Genetics Academy of Sciences of the Czech Republic Praha Czech Republic
NatureMetrics Ltd Surrey Research Park Guildford GU2 7HJ UK
School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne UK
Zobrazit více v PubMed
Sutherland TD, Young JH, Weisman S, Hayashi CY, Merritt DJ. Insect silk: one name, many materials. Annu. Rev. Entomol. 2010;55:171–188. doi: 10.1146/annurev-ento-112408-085401. PubMed DOI
Kono N, et al. The bagworm genome reveals a unique fibroin gene that provides high tensile strength. Commun. Biol. 2019;2:148. doi: 10.1038/s42003-019-0412-8. PubMed DOI PMC
Kono, N. et al. Darwin’s bark spider shares a spidroin repertoire with Caerostris extrusa but achieves extraordinary silk toughness through gene expression. Open Biol.11, 210242 (2021). PubMed PMC
Luo, S. Q., Tang, M., Frandsen, P. B., Stewart, R. J. & Zhou, X. The genome of an underwater architect, the caddisfly Stenopsyche tienmushanensis Hwang (Insecta: Trichoptera). Gigascience7, giy143 (2018). PubMed PMC
Rindos, M. et al. Comparison of silks from pseudoips prasinana and bombyx mori shows molecular convergence in fibroin heavy chains but large differences in other silk components. Int. J. Mol. Sci.22, 8246 (2021). PubMed PMC
Kono, N. et al. Multicomponent nature underlies the extraordinary mechanical properties of spider dragline silk. Proc. Natl Acad. Sci. USA118, e2107065118 (2021). PubMed PMC
Rouhova L, et al. Silk of the common clothes moth, Tineola bisselliella, a cosmopolitan pest belonging to the basal ditrysian moth line. Insect Biochem. Mol. Biol. 2021;130:103527. doi: 10.1016/j.ibmb.2021.103527. PubMed DOI
Frandsen, P. B. et al. Exploring the underwater silken architectures of caddisworms: comparative silkomics across two caddisfly suborders. Philos. Trans. R. Soc. B374, 20190206 (2019). PubMed PMC
Rouhová, L. et al. Using the multi-omics approach to reveal the silk composition in Plectrocnemia conspersa. Front. Mol. Biosci.9, 10.3389/fmolb.2022.945239 (2022). PubMed PMC
Sutherland TD, et al. Biocompatibility and immunogenic response to recombinant honeybee silk material. J. Biomed. Mater. Res A. 2019;107:1763–1770. PubMed
Sutherland TD, et al. Conservation of essential design features in coiled coil silks. Mol. Biol. Evolution. 2007;24:2424–2432. doi: 10.1093/molbev/msm171. PubMed DOI
Kristensen, N. P., Scoble, M. J. & Karsholt, O. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 699–747 (2007).
Thomas, J. A., Frandsen, P. B., Prendini, E., Zhou, X. & Holzenthal, R. W. A multigene phylogeny and timeline for Trichoptera (Insecta. Syst. Entomol.45, 670–686 (2020). .
Sehnal F, Akai H. Insect silk glands—their types, development and function, and effects of environmental-factors and morphogenetic hormones on them. Int. J. Insect Morphol. 1990;19:79–132. doi: 10.1016/0020-7322(90)90022-H. DOI
Sehnal F, Zurovec M. Construction of silk fiber core in lepidoptera. Biomacromolecules. 2004;5:666–674. doi: 10.1021/bm0344046. PubMed DOI
Kludkiewicz B, et al. The expansion of genes encoding soluble silk components in the greater wax moth, Galleria mellonella. Insect Biochem. Mol. Biol. 2019;106:28–38. doi: 10.1016/j.ibmb.2018.11.003. PubMed DOI
Zhang Y, et al. Comparative proteome analysis of multi-layer cocoon of the silkworm, Bombyx mori. PLoS ONE. 2015;10:e0123403. doi: 10.1371/journal.pone.0123403. PubMed DOI PMC
Tsubota T, Yamamoto K, Mita K, Sezutsu H. Gene expression analysis in the larval silk gland of the eri silkworm Samia ricini. Insect Sci. 2016;23:791–804. doi: 10.1111/1744-7917.12251. PubMed DOI
Zurovec M, Sehnal F, Scheller K, Kumaran AK. Silk gland specific Cdnas from Galleria-Mellonella L. Insect Biochem. Mol. 1992;22:55. doi: 10.1016/0965-1748(92)90100-S. DOI
Tsubota T, et al. Transcriptomic analysis of the bagworm moth silk gland reveals a number of silk genes conserved within Lepidoptera. Insect Sci. 2021;28:885–900. doi: 10.1111/1744-7917.12846. PubMed DOI
Sohn JC, et al. A molecular phylogeny for yponomeutoidea (insecta, Lepidoptera, ditrysia) and its implications for classification, biogeography and the evolution of host plant use. PLoS ONE. 2013;8:e55066. doi: 10.1371/journal.pone.0055066. PubMed DOI PMC
Common, I. F. B. Moths of Australia (Melbourne University Press, 1990).
Kuznetsov, N. Y. A Revision of Amber Lepidoptera. (Paleontological Institute, USSR Academy of Sciences, 1941).
Powell, J. A., Mitter, C. & Farrell, B. D. in Handbook of Zoology 4 Vol. Vol. 1: Evolution, Systematics, and Biogeography (ed Kristensen, N. P.) 403–422 (Walter de Gruyter, 1998).
Grimaldi, D. A. & Engel, M. S. Evolution of the Insects (Cambridge University Press, 2005).
Löfstedt C, Herrebout WM, Menken SBJ. Sex pheromones and their potential role in the evolution of reproductive isolation in small ermine moths (Yponomeutidae) Chemoecology. 1991;2:20–28. doi: 10.1007/BF01240662. DOI
Menken SBJ, Herrebout WM, Wiebes JT. Small ermine moths (Yponomeuta): their host relations and evolution. Annu. Rev. Entomol. 1992;37:41–66. doi: 10.1146/annurev.en.37.010192.000353. DOI
Roessingh P, Xu S, Menken SB. Olfactory receptors on the maxillary palps of small ermine moth larvae: evolutionary history of benzaldehyde sensitivity. J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 2007;193:635–647. doi: 10.1007/s00359-007-0218-x. PubMed DOI PMC
Hora, K. H. Genetic Architecture of Host Specialisation in Yponomeuta. (2014).
Ulenberg SA. Phylogeny of the Yponomeuta species (Lepidoptera, Yponomeutidae) and the history of their host plant associations. Tijdschr. voor Entomologie. 2009;152:187–207. doi: 10.1163/22119434-900000275. DOI
Turner H, Lieshout N, Van Ginkel WE, Menken SB. Molecular phylogeny of the small ermine moth genus Yponomeuta (Lepidoptera, Yponomeutidae) in the palaearctic. PLoS ONE. 2010;5:e9933. doi: 10.1371/journal.pone.0009933. PubMed DOI PMC
Gershenson, Z. S., Pavlicek, T., Kravchenko, V. & Nevo, E. Yponomeutoid Moths (Lepidoptera: Yponomeutidae, Plutellidae, Argyresthiidae) of Israel. Vol. 58 (Pensoft Publishers, 2006).
Yonemura N, Sehnal F. The design of silk fiber composition in moths has been conserved for more than 150 million years. J. Mol. Evolution. 2006;63:42–53. doi: 10.1007/s00239-005-0119-y. PubMed DOI
Zurovec M, et al. Functional conservation and structural diversification of silk sericins in two moth species. Biomacromolecules. 2013;14:1859–1866. doi: 10.1021/bm400249b. PubMed DOI
Vurture GW, et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics. 2017;33:2202–2204. doi: 10.1093/bioinformatics/btx153. PubMed DOI PMC
Liu GC, et al. Genome size variation in butterflies (Insecta, Lepidotera, Papilionoidea): a thorough phylogenetic comparison. Syst. Entomol. 2020;45:571–582. doi: 10.1111/syen.12417. DOI
Chen Q, et al. Genome of the webworm Hyphantria cunea unveils genetic adaptations supporting its rapid invasion and spread. Bmc Genomics. 2020;21:242. doi: 10.1186/s12864-020-6629-6. PubMed DOI PMC
Yandell M, Ence D. A beginner’s guide to eukaryotic genome annotation. Nat. Rev. Genet. 2012;13:329–342. doi: 10.1038/nrg3174. PubMed DOI
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. (2013–2015).
Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257. doi: 10.1186/s13059-019-1891-0. PubMed DOI PMC
Wang JR, Holt J, McMillan L, Jones CD. FMLRC: Hybrid long read error correction using an FM-index. BMC Bioinform. 2018;19:50. doi: 10.1186/s12859-018-2051-3. PubMed DOI PMC
Zimin AV, Salzberg SL. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput. Biol. 2020;16:e1007981. doi: 10.1371/journal.pcbi.1007981. PubMed DOI PMC
Inoue S, et al. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J. Biol. Chem. 2000;275:40517–40528. doi: 10.1074/jbc.M006897200. PubMed DOI
Shimura K. Chemical-composition and biosynthesis of silk proteins. Experientia. 1983;39:455–461. doi: 10.1007/BF01965160. DOI
Yamaguchi K, et al. Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. J. Mol. Biol. 1989;210:127–139. doi: 10.1016/0022-2836(89)90295-7. PubMed DOI
Tanaka K, Mizuno S. Homologues of fibroin L-chain and P25 of Bombyx mori are present in Dendrolimus spectabilis and Papilio xuthus but not detectable in Antheraea yamamai. Insect Biochem. Mol. Biol. 2001;31:665–677. doi: 10.1016/S0965-1748(00)00173-9. PubMed DOI
Zurovec M, Kodrik D, Yang C, Sehnal F, Scheller K. The P25 component of Galleria silk. Mol. Gen. Genet. 1998;257:264–270. doi: 10.1007/s004380050647. PubMed DOI
Zurovec M, Vaskova M, Kodrik D, Sehnal F, Kumaran AK. Light-chain fibroin of Galleria mellonella L. Mol. Gen. Genet. 1995;247:1–6. doi: 10.1007/BF00425815. PubMed DOI
Lucas, F. & Rudall, K. M. in Comprehensive Biochemistry Vol. 26 (eds Florkin, M. & Stotz, E. H.) 475–558 (Elsevier, 1968).
Zhou CZ, et al. Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res. 2000;28:2413–2419. doi: 10.1093/nar/28.12.2413. PubMed DOI PMC
Warwicker JO. Comparative studies of fibroins. II. The crystal structures of various fibroins. J. Mol. Biol. 1960;2:350–362. doi: 10.1016/S0022-2836(60)80046-0. PubMed DOI
Craig CL. Evolution of arthropod silks. Annu. Rev. Entomol. 1997;42:231–267. doi: 10.1146/annurev.ento.42.1.231. PubMed DOI
Inoue S, et al. Assembly of the silk fibroin elementary unit in endoplasmic reticulum and a role of L-chain for protection of alpha1,2-mannose residues in N-linked oligosaccharide chains of fibrohexamerin/P25. Eur. J. Biochem. 2004;271:356–366. doi: 10.1046/j.1432-1033.2003.03934.x. PubMed DOI PMC
Tanaka K, Inoue S, Mizuno S. Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. Insect Biochem. Mol. Biol. 1999;29:269–276. doi: 10.1016/S0965-1748(98)00135-0. PubMed DOI
Yonemura N, Mita K, Tamura T, Sehnal F. Conservation of silk genes in Trichoptera and Lepidoptera. J. Mol. Evol. 2009;68:641–653. doi: 10.1007/s00239-009-9234-5. PubMed DOI PMC
Zabelina V, et al. Mutation in Bombyx mori fibrohexamerin (P25) gene causes reorganization of rough endoplasmic reticulum in posterior silk gland cells and alters morphology of fibroin secretory globules in the silk gland lumen. Insect Biochem. Mol. Biol. 2021;135:103607. doi: 10.1016/j.ibmb.2021.103607. PubMed DOI
Syed, Z. A., Hard, T., Uv, A. & van Dijk-Hard, I. F. A potential role for Drosophila Mucins in development and physiology. PLoS ONE3, e3041 (2008). PubMed PMC
Farkas R, et al. Apocrine secretion in Drosophila salivary glands: subcellular origin, dynamics, and identification of secretory proteins. PLoS ONE. 2014;9:e94383. doi: 10.1371/journal.pone.0094383. PubMed DOI PMC
Marec F. Genetic control of the pest Lepidoptera: induction of sex-linked recessive lethal mutation in Ephestia kuehniella (Pyralidae) Acta Entomol. Bohemoslov. 1990;87:445–458.
Levine JD, Sauman I, Imbalzano M, Reppert SM, Jackson FR. Period protein from the giant silkmoth Antheraea pernyi functions as a circadian clock element in Drosophila melanogaster. Neuron. 1995;15:147–157. doi: 10.1016/0896-6273(95)90072-1. PubMed DOI
Hejnickova, M. et al. Absence of W chromosome in psychidae moths and implications for the theory of sex chromosome evolution in Lepidoptera. Genes (Basel)10, 10.3390/genes10121016 (2019). PubMed PMC
Buntrock L, Marec F, Krueger S, Traut W. Organ growth without cell division: somatic polyploidy in a moth, Ephestia kuehniella. Genome. 2012;55:755–763. doi: 10.1139/g2012-060. PubMed DOI
Ferguson KB, et al. Jekyll or Hyde? The genome (and more) of Nesidiocoris tenuis, a zoophytophagous predatory bug that is both a biological control agent and a pest. Insect Mol. Biol. 2021;30:188–209. doi: 10.1111/imb.12688. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–770. doi: 10.1093/bioinformatics/btr011. PubMed DOI PMC
De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34:2666–2669. doi: 10.1093/bioinformatics/bty149. PubMed DOI PMC
Li H. Fast construction of FM-index for long sequence reads. Bioinformatics. 2014;30:3274–3275. doi: 10.1093/bioinformatics/btu541. PubMed DOI PMC
Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019;37:540–546. doi: 10.1038/s41587-019-0072-8. PubMed DOI
Guan D, et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020;36:2896–2898. doi: 10.1093/bioinformatics/btaa025. PubMed DOI PMC
Mikheenko A, Valin G, Prjibelski A, Saveliev V, Gurevich A. Icarus: visualizer for de novo assembly evaluation. Bioinformatics. 2016;32:3321–3323. doi: 10.1093/bioinformatics/btw379. PubMed DOI
Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 2019;1962:227–245. doi: 10.1007/978-1-4939-9173-0_14. PubMed DOI
Novak, P. et al. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res.45, e111 (2017). PubMed PMC
Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Hoff KJ, Lomsadze A, Borodovsky M, Stanke M. Whole-Genome Annotation with BRAKER. Gene Prediction: Methods Protoc. 2019;1962:65–95. PubMed PMC
O’Leary NA, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D745. doi: 10.1093/nar/gkv1189. PubMed DOI PMC
Humann JL, Lee T, Ficklin S, Main D. Structural and functional annotation of eukaryotic genomes with GenSAS. Gene Prediction: Methods Protoc. 2019;1962:29–51. PubMed
Manchanda, N. et al. GenomeQC: a quality assessment tool for genome assemblies and gene structure annotations. Bmc Genomics21, 10.1186/s12864-020-6568-2 (2020). PubMed PMC
Yadav, C., Smith, M., Ogunremi, D. & Yack, J. Draft genome assembly and annotation of the masked birch caterpillar, Drepana arcuata (Lepidoptera: Drepanoidea). Data Brief33, 106531 (2020). PubMed PMC
Yan, B., Yu, X., Dai, R., Li, Z. & Yang, M. Chromosome-level genome assembly of Nephotettix cincticeps (Uhler, 1896) (Hemiptera: Cicadellidae: Deltocephalinae). Genome Biol. Evol., 10.1093/gbe/evab236 (2021). PubMed PMC
Gershman, A. et al. De novo genome assembly of the tobacco hornworm moth (Manduca sexta). G3 (Bethesda)11, 10.1093/g3journal/jkaa047 (2021). PubMed PMC
Singh KS, et al. De Novo genome assembly of the meadow brown butterfly, Maniola jurtina. G3 (Bethesda) 2020;10:1477–1484. doi: 10.1534/g3.120.401071. PubMed DOI PMC
Muller, H. et al. Draft nuclear genome and complete mitogenome of the Mediterranean corn borer, Sesamia nonagrioides, a major pest of maize. G3 (Bethesda), 10.1093/g3journal/jkab155 (2021). PubMed PMC
Simon, S. et al. Genome and transcriptome analysis of the beet armyworm Spodoptera exigua reveals targets for pest control. G3 (Bethesda), 10.1093/g3journal/jkab311 (2021). PubMed PMC
Kawamoto M, et al. High-quality genome assembly of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2019;107:53–62. doi: 10.1016/j.ibmb.2019.02.002. PubMed DOI
Ward CM, et al. A haploid diamondback moth (Plutella xylostella L.) genome assembly resolves 31 chromosomes and identifies a diamide resistance mutation. Insect Biochem. Mol. Biol. 2021;138:103622. doi: 10.1016/j.ibmb.2021.103622. PubMed DOI
Bushnell B, Rood J, Singer E. BBMerge—accurate paired shotgun read merging via overlap. PLoS ONE. 2017;12:e0185056. doi: 10.1371/journal.pone.0185056. PubMed DOI PMC
Bushmanova, E., Antipov, D., Lapidus, A. & Prjibelski, A. D. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience8, 10.1093/gigascience/giz100 (2019). PubMed PMC
Hara Y, et al. Optimizing and benchmarking de novo transcriptome sequencing: from library preparation to assembly evaluation. Bmc Genomics. 2015;16:977. doi: 10.1186/s12864-015-2007-1. PubMed DOI PMC
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 2017;14:417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Yoshido A, et al. Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies. Heredity (Edinb.) 2020;125:138–154. doi: 10.1038/s41437-020-0325-9. PubMed DOI PMC
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI
Haas, B. & A., P. TransDecoder 5.5.0 [Online]. (accessed 2019).
Almagro Armenteros JJ, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019;37:420–423. doi: 10.1038/s41587-019-0036-z. PubMed DOI
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Cox J, et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Cox J, et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011;10:1794–1805. doi: 10.1021/pr101065j. PubMed DOI
Using the multi-omics approach to reveal the silk composition in Plectrocnemia conspersa
Dryad
10.5061/dryad.4j0zpc8d3