Genome sequence and silkomics of the spindle ermine moth, Yponomeuta cagnagella, representing the early diverging lineage of the ditrysian Lepidoptera

. 2022 Nov 23 ; 5 (1) : 1281. [epub] 20221123

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36418465
Odkazy

PubMed 36418465
PubMed Central PMC9684489
DOI 10.1038/s42003-022-04240-9
PII: 10.1038/s42003-022-04240-9
Knihovny.cz E-zdroje

Many lepidopteran species produce silk, cocoons, feeding tubes, or nests for protection from predators and parasites for caterpillars and pupae. Yet, the number of lepidopteran species whose silk composition has been studied in detail is very small, because the genes encoding the major structural silk proteins tend to be large and repetitive, making their assembly and sequence analysis difficult. Here we have analyzed the silk of Yponomeuta cagnagella, which represents one of the early diverging lineages of the ditrysian Lepidoptera thus improving the coverage of the order. To obtain a comprehensive list of the Y. cagnagella silk genes, we sequenced and assembled a draft genome using Oxford Nanopore and Illumina technologies. We used a silk-gland transcriptome and a silk proteome to identify major silk components and verified the tissue specificity of expression of individual genes. A detailed annotation of the major genes and their putative products, including their complete sequences and exon-intron structures is provided. The morphology of silk glands and fibers are also shown. This study fills an important gap in our growing understanding of the structure, evolution, and function of silk genes and provides genomic resources for future studies of the chemical ecology of Yponomeuta species.

Zobrazit více v PubMed

Sutherland TD, Young JH, Weisman S, Hayashi CY, Merritt DJ. Insect silk: one name, many materials. Annu. Rev. Entomol. 2010;55:171–188. doi: 10.1146/annurev-ento-112408-085401. PubMed DOI

Kono N, et al. The bagworm genome reveals a unique fibroin gene that provides high tensile strength. Commun. Biol. 2019;2:148. doi: 10.1038/s42003-019-0412-8. PubMed DOI PMC

Kono, N. et al. Darwin’s bark spider shares a spidroin repertoire with Caerostris extrusa but achieves extraordinary silk toughness through gene expression. Open Biol.11, 210242 (2021). PubMed PMC

Luo, S. Q., Tang, M., Frandsen, P. B., Stewart, R. J. & Zhou, X. The genome of an underwater architect, the caddisfly Stenopsyche tienmushanensis Hwang (Insecta: Trichoptera). Gigascience7, giy143 (2018). PubMed PMC

Rindos, M. et al. Comparison of silks from pseudoips prasinana and bombyx mori shows molecular convergence in fibroin heavy chains but large differences in other silk components. Int. J. Mol. Sci.22, 8246 (2021). PubMed PMC

Kono, N. et al. Multicomponent nature underlies the extraordinary mechanical properties of spider dragline silk. Proc. Natl Acad. Sci. USA118, e2107065118 (2021). PubMed PMC

Rouhova L, et al. Silk of the common clothes moth, Tineola bisselliella, a cosmopolitan pest belonging to the basal ditrysian moth line. Insect Biochem. Mol. Biol. 2021;130:103527. doi: 10.1016/j.ibmb.2021.103527. PubMed DOI

Frandsen, P. B. et al. Exploring the underwater silken architectures of caddisworms: comparative silkomics across two caddisfly suborders. Philos. Trans. R. Soc. B374, 20190206 (2019). PubMed PMC

Rouhová, L. et al. Using the multi-omics approach to reveal the silk composition in Plectrocnemia conspersa. Front. Mol. Biosci.9, 10.3389/fmolb.2022.945239 (2022). PubMed PMC

Sutherland TD, et al. Biocompatibility and immunogenic response to recombinant honeybee silk material. J. Biomed. Mater. Res A. 2019;107:1763–1770. PubMed

Sutherland TD, et al. Conservation of essential design features in coiled coil silks. Mol. Biol. Evolution. 2007;24:2424–2432. doi: 10.1093/molbev/msm171. PubMed DOI

Kristensen, N. P., Scoble, M. J. & Karsholt, O. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 699–747 (2007).

Thomas, J. A., Frandsen, P. B., Prendini, E., Zhou, X. & Holzenthal, R. W. A multigene phylogeny and timeline for Trichoptera (Insecta. Syst. Entomol.45, 670–686 (2020). .

Sehnal F, Akai H. Insect silk glands—their types, development and function, and effects of environmental-factors and morphogenetic hormones on them. Int. J. Insect Morphol. 1990;19:79–132. doi: 10.1016/0020-7322(90)90022-H. DOI

Sehnal F, Zurovec M. Construction of silk fiber core in lepidoptera. Biomacromolecules. 2004;5:666–674. doi: 10.1021/bm0344046. PubMed DOI

Kludkiewicz B, et al. The expansion of genes encoding soluble silk components in the greater wax moth, Galleria mellonella. Insect Biochem. Mol. Biol. 2019;106:28–38. doi: 10.1016/j.ibmb.2018.11.003. PubMed DOI

Zhang Y, et al. Comparative proteome analysis of multi-layer cocoon of the silkworm, Bombyx mori. PLoS ONE. 2015;10:e0123403. doi: 10.1371/journal.pone.0123403. PubMed DOI PMC

Tsubota T, Yamamoto K, Mita K, Sezutsu H. Gene expression analysis in the larval silk gland of the eri silkworm Samia ricini. Insect Sci. 2016;23:791–804. doi: 10.1111/1744-7917.12251. PubMed DOI

Zurovec M, Sehnal F, Scheller K, Kumaran AK. Silk gland specific Cdnas from Galleria-Mellonella L. Insect Biochem. Mol. 1992;22:55. doi: 10.1016/0965-1748(92)90100-S. DOI

Tsubota T, et al. Transcriptomic analysis of the bagworm moth silk gland reveals a number of silk genes conserved within Lepidoptera. Insect Sci. 2021;28:885–900. doi: 10.1111/1744-7917.12846. PubMed DOI

Sohn JC, et al. A molecular phylogeny for yponomeutoidea (insecta, Lepidoptera, ditrysia) and its implications for classification, biogeography and the evolution of host plant use. PLoS ONE. 2013;8:e55066. doi: 10.1371/journal.pone.0055066. PubMed DOI PMC

Common, I. F. B. Moths of Australia (Melbourne University Press, 1990).

Kuznetsov, N. Y. A Revision of Amber Lepidoptera. (Paleontological Institute, USSR Academy of Sciences, 1941).

Powell, J. A., Mitter, C. & Farrell, B. D. in Handbook of Zoology 4 Vol. Vol. 1: Evolution, Systematics, and Biogeography (ed Kristensen, N. P.) 403–422 (Walter de Gruyter, 1998).

Grimaldi, D. A. & Engel, M. S. Evolution of the Insects (Cambridge University Press, 2005).

Löfstedt C, Herrebout WM, Menken SBJ. Sex pheromones and their potential role in the evolution of reproductive isolation in small ermine moths (Yponomeutidae) Chemoecology. 1991;2:20–28. doi: 10.1007/BF01240662. DOI

Menken SBJ, Herrebout WM, Wiebes JT. Small ermine moths (Yponomeuta): their host relations and evolution. Annu. Rev. Entomol. 1992;37:41–66. doi: 10.1146/annurev.en.37.010192.000353. DOI

Roessingh P, Xu S, Menken SB. Olfactory receptors on the maxillary palps of small ermine moth larvae: evolutionary history of benzaldehyde sensitivity. J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol. 2007;193:635–647. doi: 10.1007/s00359-007-0218-x. PubMed DOI PMC

Hora, K. H. Genetic Architecture of Host Specialisation in Yponomeuta. (2014).

Ulenberg SA. Phylogeny of the Yponomeuta species (Lepidoptera, Yponomeutidae) and the history of their host plant associations. Tijdschr. voor Entomologie. 2009;152:187–207. doi: 10.1163/22119434-900000275. DOI

Turner H, Lieshout N, Van Ginkel WE, Menken SB. Molecular phylogeny of the small ermine moth genus Yponomeuta (Lepidoptera, Yponomeutidae) in the palaearctic. PLoS ONE. 2010;5:e9933. doi: 10.1371/journal.pone.0009933. PubMed DOI PMC

Gershenson, Z. S., Pavlicek, T., Kravchenko, V. & Nevo, E. Yponomeutoid Moths (Lepidoptera: Yponomeutidae, Plutellidae, Argyresthiidae) of Israel. Vol. 58 (Pensoft Publishers, 2006).

Yonemura N, Sehnal F. The design of silk fiber composition in moths has been conserved for more than 150 million years. J. Mol. Evolution. 2006;63:42–53. doi: 10.1007/s00239-005-0119-y. PubMed DOI

Zurovec M, et al. Functional conservation and structural diversification of silk sericins in two moth species. Biomacromolecules. 2013;14:1859–1866. doi: 10.1021/bm400249b. PubMed DOI

Vurture GW, et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics. 2017;33:2202–2204. doi: 10.1093/bioinformatics/btx153. PubMed DOI PMC

Liu GC, et al. Genome size variation in butterflies (Insecta, Lepidotera, Papilionoidea): a thorough phylogenetic comparison. Syst. Entomol. 2020;45:571–582. doi: 10.1111/syen.12417. DOI

Chen Q, et al. Genome of the webworm Hyphantria cunea unveils genetic adaptations supporting its rapid invasion and spread. Bmc Genomics. 2020;21:242. doi: 10.1186/s12864-020-6629-6. PubMed DOI PMC

Yandell M, Ence D. A beginner’s guide to eukaryotic genome annotation. Nat. Rev. Genet. 2012;13:329–342. doi: 10.1038/nrg3174. PubMed DOI

Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. (2013–2015).

Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257. doi: 10.1186/s13059-019-1891-0. PubMed DOI PMC

Wang JR, Holt J, McMillan L, Jones CD. FMLRC: Hybrid long read error correction using an FM-index. BMC Bioinform. 2018;19:50. doi: 10.1186/s12859-018-2051-3. PubMed DOI PMC

Zimin AV, Salzberg SL. The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS Comput. Biol. 2020;16:e1007981. doi: 10.1371/journal.pcbi.1007981. PubMed DOI PMC

Inoue S, et al. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J. Biol. Chem. 2000;275:40517–40528. doi: 10.1074/jbc.M006897200. PubMed DOI

Shimura K. Chemical-composition and biosynthesis of silk proteins. Experientia. 1983;39:455–461. doi: 10.1007/BF01965160. DOI

Yamaguchi K, et al. Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. J. Mol. Biol. 1989;210:127–139. doi: 10.1016/0022-2836(89)90295-7. PubMed DOI

Tanaka K, Mizuno S. Homologues of fibroin L-chain and P25 of Bombyx mori are present in Dendrolimus spectabilis and Papilio xuthus but not detectable in Antheraea yamamai. Insect Biochem. Mol. Biol. 2001;31:665–677. doi: 10.1016/S0965-1748(00)00173-9. PubMed DOI

Zurovec M, Kodrik D, Yang C, Sehnal F, Scheller K. The P25 component of Galleria silk. Mol. Gen. Genet. 1998;257:264–270. doi: 10.1007/s004380050647. PubMed DOI

Zurovec M, Vaskova M, Kodrik D, Sehnal F, Kumaran AK. Light-chain fibroin of Galleria mellonella L. Mol. Gen. Genet. 1995;247:1–6. doi: 10.1007/BF00425815. PubMed DOI

Lucas, F. & Rudall, K. M. in Comprehensive Biochemistry Vol. 26 (eds Florkin, M. & Stotz, E. H.) 475–558 (Elsevier, 1968).

Zhou CZ, et al. Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res. 2000;28:2413–2419. doi: 10.1093/nar/28.12.2413. PubMed DOI PMC

Warwicker JO. Comparative studies of fibroins. II. The crystal structures of various fibroins. J. Mol. Biol. 1960;2:350–362. doi: 10.1016/S0022-2836(60)80046-0. PubMed DOI

Craig CL. Evolution of arthropod silks. Annu. Rev. Entomol. 1997;42:231–267. doi: 10.1146/annurev.ento.42.1.231. PubMed DOI

Inoue S, et al. Assembly of the silk fibroin elementary unit in endoplasmic reticulum and a role of L-chain for protection of alpha1,2-mannose residues in N-linked oligosaccharide chains of fibrohexamerin/P25. Eur. J. Biochem. 2004;271:356–366. doi: 10.1046/j.1432-1033.2003.03934.x. PubMed DOI PMC

Tanaka K, Inoue S, Mizuno S. Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. Insect Biochem. Mol. Biol. 1999;29:269–276. doi: 10.1016/S0965-1748(98)00135-0. PubMed DOI

Yonemura N, Mita K, Tamura T, Sehnal F. Conservation of silk genes in Trichoptera and Lepidoptera. J. Mol. Evol. 2009;68:641–653. doi: 10.1007/s00239-009-9234-5. PubMed DOI PMC

Zabelina V, et al. Mutation in Bombyx mori fibrohexamerin (P25) gene causes reorganization of rough endoplasmic reticulum in posterior silk gland cells and alters morphology of fibroin secretory globules in the silk gland lumen. Insect Biochem. Mol. Biol. 2021;135:103607. doi: 10.1016/j.ibmb.2021.103607. PubMed DOI

Syed, Z. A., Hard, T., Uv, A. & van Dijk-Hard, I. F. A potential role for Drosophila Mucins in development and physiology. PLoS ONE3, e3041 (2008). PubMed PMC

Farkas R, et al. Apocrine secretion in Drosophila salivary glands: subcellular origin, dynamics, and identification of secretory proteins. PLoS ONE. 2014;9:e94383. doi: 10.1371/journal.pone.0094383. PubMed DOI PMC

Marec F. Genetic control of the pest Lepidoptera: induction of sex-linked recessive lethal mutation in Ephestia kuehniella (Pyralidae) Acta Entomol. Bohemoslov. 1990;87:445–458.

Levine JD, Sauman I, Imbalzano M, Reppert SM, Jackson FR. Period protein from the giant silkmoth Antheraea pernyi functions as a circadian clock element in Drosophila melanogaster. Neuron. 1995;15:147–157. doi: 10.1016/0896-6273(95)90072-1. PubMed DOI

Hejnickova, M. et al. Absence of W chromosome in psychidae moths and implications for the theory of sex chromosome evolution in Lepidoptera. Genes (Basel)10, 10.3390/genes10121016 (2019). PubMed PMC

Buntrock L, Marec F, Krueger S, Traut W. Organ growth without cell division: somatic polyploidy in a moth, Ephestia kuehniella. Genome. 2012;55:755–763. doi: 10.1139/g2012-060. PubMed DOI

Ferguson KB, et al. Jekyll or Hyde? The genome (and more) of Nesidiocoris tenuis, a zoophytophagous predatory bug that is both a biological control agent and a pest. Insect Mol. Biol. 2021;30:188–209. doi: 10.1111/imb.12688. PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–770. doi: 10.1093/bioinformatics/btr011. PubMed DOI PMC

De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34:2666–2669. doi: 10.1093/bioinformatics/bty149. PubMed DOI PMC

Li H. Fast construction of FM-index for long sequence reads. Bioinformatics. 2014;30:3274–3275. doi: 10.1093/bioinformatics/btu541. PubMed DOI PMC

Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019;37:540–546. doi: 10.1038/s41587-019-0072-8. PubMed DOI

Guan D, et al. Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics. 2020;36:2896–2898. doi: 10.1093/bioinformatics/btaa025. PubMed DOI PMC

Mikheenko A, Valin G, Prjibelski A, Saveliev V, Gurevich A. Icarus: visualizer for de novo assembly evaluation. Bioinformatics. 2016;32:3321–3323. doi: 10.1093/bioinformatics/btw379. PubMed DOI

Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 2019;1962:227–245. doi: 10.1007/978-1-4939-9173-0_14. PubMed DOI

Novak, P. et al. TAREAN: a computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res.45, e111 (2017). PubMed PMC

Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Hoff KJ, Lomsadze A, Borodovsky M, Stanke M. Whole-Genome Annotation with BRAKER. Gene Prediction: Methods Protoc. 2019;1962:65–95. PubMed PMC

O’Leary NA, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D745. doi: 10.1093/nar/gkv1189. PubMed DOI PMC

Humann JL, Lee T, Ficklin S, Main D. Structural and functional annotation of eukaryotic genomes with GenSAS. Gene Prediction: Methods Protoc. 2019;1962:29–51. PubMed

Manchanda, N. et al. GenomeQC: a quality assessment tool for genome assemblies and gene structure annotations. Bmc Genomics21, 10.1186/s12864-020-6568-2 (2020). PubMed PMC

Yadav, C., Smith, M., Ogunremi, D. & Yack, J. Draft genome assembly and annotation of the masked birch caterpillar, Drepana arcuata (Lepidoptera: Drepanoidea). Data Brief33, 106531 (2020). PubMed PMC

Yan, B., Yu, X., Dai, R., Li, Z. & Yang, M. Chromosome-level genome assembly of Nephotettix cincticeps (Uhler, 1896) (Hemiptera: Cicadellidae: Deltocephalinae). Genome Biol. Evol., 10.1093/gbe/evab236 (2021). PubMed PMC

Gershman, A. et al. De novo genome assembly of the tobacco hornworm moth (Manduca sexta). G3 (Bethesda)11, 10.1093/g3journal/jkaa047 (2021). PubMed PMC

Singh KS, et al. De Novo genome assembly of the meadow brown butterfly, Maniola jurtina. G3 (Bethesda) 2020;10:1477–1484. doi: 10.1534/g3.120.401071. PubMed DOI PMC

Muller, H. et al. Draft nuclear genome and complete mitogenome of the Mediterranean corn borer, Sesamia nonagrioides, a major pest of maize. G3 (Bethesda), 10.1093/g3journal/jkab155 (2021). PubMed PMC

Simon, S. et al. Genome and transcriptome analysis of the beet armyworm Spodoptera exigua reveals targets for pest control. G3 (Bethesda), 10.1093/g3journal/jkab311 (2021). PubMed PMC

Kawamoto M, et al. High-quality genome assembly of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2019;107:53–62. doi: 10.1016/j.ibmb.2019.02.002. PubMed DOI

Ward CM, et al. A haploid diamondback moth (Plutella xylostella L.) genome assembly resolves 31 chromosomes and identifies a diamide resistance mutation. Insect Biochem. Mol. Biol. 2021;138:103622. doi: 10.1016/j.ibmb.2021.103622. PubMed DOI

Bushnell B, Rood J, Singer E. BBMerge—accurate paired shotgun read merging via overlap. PLoS ONE. 2017;12:e0185056. doi: 10.1371/journal.pone.0185056. PubMed DOI PMC

Bushmanova, E., Antipov, D., Lapidus, A. & Prjibelski, A. D. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience8, 10.1093/gigascience/giz100 (2019). PubMed PMC

Hara Y, et al. Optimizing and benchmarking de novo transcriptome sequencing: from library preparation to assembly evaluation. Bmc Genomics. 2015;16:977. doi: 10.1186/s12864-015-2007-1. PubMed DOI PMC

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 2017;14:417–419. doi: 10.1038/nmeth.4197. PubMed DOI PMC

Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Yoshido A, et al. Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies. Heredity (Edinb.) 2020;125:138–154. doi: 10.1038/s41437-020-0325-9. PubMed DOI PMC

Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI

Haas, B. & A., P. TransDecoder 5.5.0 [Online]. (accessed 2019).

Almagro Armenteros JJ, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019;37:420–423. doi: 10.1038/s41587-019-0036-z. PubMed DOI

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Cox J, et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC

Cox J, et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011;10:1794–1805. doi: 10.1021/pr101065j. PubMed DOI

Zobrazit více v PubMed

Dryad
10.5061/dryad.4j0zpc8d3

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...