Comprehensive analysis of silk proteins and gland compartments in Limnephilus lunatus, a case-making trichopteran
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
BYCZ01-039
European Community's Program Interreg Bayern Tschechische Republik
BYCZ01-039
European Community's Program Interreg Bayern Tschechische Republik
BYCZ01-039
European Community's Program Interreg Bayern Tschechische Republik
BYCZ01-039
European Community's Program Interreg Bayern Tschechische Republik
BYCZ01-039
European Community's Program Interreg Bayern Tschechische Republik
BYCZ01-039
European Community's Program Interreg Bayern Tschechische Republik
PubMed
38745159
PubMed Central
PMC11092239
DOI
10.1186/s12864-024-10381-4
PII: 10.1186/s12864-024-10381-4
Knihovny.cz E-resources
- Keywords
- Limnephilus flavicornis, Plectrocnemia conspersa, Fibroin, Gene duplication, Hydrophobicity, Sericin,
- MeSH
- Fibroins genetics metabolism chemistry MeSH
- Silk * metabolism chemistry MeSH
- Insecta metabolism genetics MeSH
- Insect Proteins genetics metabolism MeSH
- Proteome MeSH
- Proteomics methods MeSH
- Gene Expression Profiling MeSH
- Transcriptome MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Caddisfly larvae produce silk containing heavy and light fibroins, similar to the silk of Lepidoptera, for the construction of underwater structures. We analyzed the silk of Limnephilus lunatus belonging to the case-forming suborder Integripalpia. We analyzed the transcriptome, mapped the transcripts to a reference genome and identified over 80 proteins using proteomic methods, and checked the specificity of their expression. For comparison, we also analyzed the transcriptome and silk proteome of Limnephilus flavicornis. Our results show that fibroins and adhesives are produced together in the middle and posterior parts of the silk glands, while the anterior part produces enzymes and an unknown protein AT24. The number of silk proteins of L. lunatus far exceeds that of the web-spinning Plectrocnemia conspersa, a previously described species from the suborder Annulipalpia. Our results support the idea of increasing the structural complexity of silk in rigid case builders compared to trap web builders.
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Institute of Molecular Genetics Academy of Sciences of the Czech Republic Prague Czech Republic
See more in PubMed
Rouhová L, et al. Using the multi-omics approach to reveal the silk composition in Plectrocnemia conspersa. Front Mole Biosci. 2022;9:945239. doi: 10.3389/fmolb.2022.945239. PubMed DOI PMC
Wang YJ, et al. The silk gland proteome of Stenopsyche angustata provides insights into the underwater silk secretion. Insect Mol Biol. 2023 doi: 10.1111/imb.12874. PubMed DOI
Sehnal F, Zurovec M. Construction of silk fiber core in lepidoptera. Biomacromol. 2004;5:666–674. doi: 10.1021/bm0344046. PubMed DOI
Stewart RJ, Wang CS. Adaptation of caddisfly larval silks to aquatic habitats by phosphorylation of h-fibroin serines. Biomacromol. 2010;11:969–974. doi: 10.1021/bm901426d. PubMed DOI
Ashton NN, Taggart DS, Stewart RJ. Silk tape nanostructure and silk gland anatomy of trichoptera. Biopolymers. 2012;97:432–445. doi: 10.1002/bip.21720. PubMed DOI
Addison JB, et al. Reversible assembly of beta-sheet nanocrystals within caddisfly silk. Biomacromol. 2014;15:1269–1275. doi: 10.1021/bm401822p. PubMed DOI PMC
Ashton NN, Stewart RJ. Aquatic caddisworm silk is solidified by environmental metal ions during the natural fiber-spinning process. FASEB J. 2019;33:572–583. doi: 10.1096/fj.201801029R. PubMed DOI
Wang CS, Ashton NN, Weiss RB, Stewart RJ. Peroxinectin catalyzed dityrosine crosslinking in the adhesive underwater silk of a casemaker caddisfly larvae. Hysperophylax occidentalis Insect Biochem Mol Biol. 2014;54:69–79. doi: 10.1016/j.ibmb.2014.08.009. PubMed DOI
Engster M.S. Studies on silk secretion in the trichoptera (F. Limnephilidae), II. Structure and amino acid composition of the silk. Cell Tissue Res. 1976;169:77–92. doi: 10.1007/BF00219309. PubMed DOI
Kim HJ, Sun Y, Moon MJ. Fine structure of the silk spinning system in the caddisworm, Hydatophylax nigrovittatus (Trichoptera: Limnephilidae) Appl Microsc. 2020;50:16. doi: 10.1186/s42649-020-00036-5. PubMed DOI PMC
Cianficconi F, Bicchierai MC, Moretti G. in 7th Int. Symp. Trichoptera. 1993.
Frandsen P.B, et al. Exploring the underwater silken architectures of caddisworms: comparative silkomics across two caddisfly suborders. Philos Trans R Soc Lond B Biol Sci. 2019;374(1784):20190206. doi: 10.1098/rstb.2019.0206. PubMed DOI PMC
Yonemura N, Sehnal F. The design of silk fiber composition in moths has been conserved for more than 150 million years. J Mol Evol. 2006;63:42–53. doi: 10.1007/s00239-005-0119-y. PubMed DOI
Chao J, et al. MG2C: a user-friendly online tool for drawing genetic maps. Mol Hortic. 2021;1:16. doi: 10.1186/s43897-021-00020-x. PubMed DOI PMC
Kludkiewicz B, et al. Structure and expression of the silk adhesive protein Ser2 in Bombyx mori. Insect Biochem Molec. 2009;39:938–946. doi: 10.1016/j.ibmb.2009.11.005. PubMed DOI
Kludkiewicz B, et al. The expansion of genes encoding soluble silk components in the greater wax moth. Galleria mellonella Insect Biochem Mol Biol. 2019;106:28–38. doi: 10.1016/j.ibmb.2018.11.003. PubMed DOI
Hatano T, Nagashima T. The secretion process of liquid silk with nanopillar structures from Stenopsyche marmorata (Trichoptera: Stenopsychidae) Sci Rep. 2015;5:9237. doi: 10.1038/srep09237. PubMed DOI PMC
Heckenhauer J, et al. Characterization of the primary structure of the major silk gene, h-fibroin, across caddisfly (Trichoptera) suborders. iScience. 2023;26(8):107253. doi: 10.1016/j.isci.2023.107253. PubMed DOI PMC
Rouhova L, et al. Silk of the common clothes moth, Tineola bisselliella, a cosmopolitan pest belonging to the basal ditrysian moth line. Insect Biochem Mole Biol. 2021;130:103527. doi: 10.1016/j.ibmb.2021.103527. PubMed DOI
Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC
Ponnuvel KM, et al. A lipase isolated from the silkworm Bombyx mori shows antiviral activity against nucleopolyhedrovirus. J Virol. 2003;77:10725–10729. doi: 10.1128/jvi.77.19.10725-10729.2003. PubMed DOI PMC
Levine JD, Sauman I, Imbalzano M, Reppert SM, Jackson FR. Period protein from the giant silkmoth Antheraea pernyi functions as a circadian clock element in Drosophila melanogaster. Neuron. 1995;15:147–157. doi: 10.1016/0896-6273(95)90072-1. PubMed DOI
Rindos M, et al. Comparison of Silks from Pseudoips prasinana and Bombyx mori Shows Molecular Convergence in Fibroin Heavy Chains but Large Differences in Other Silk Components. Int J Mol Sci. 2021;22(15):8246. doi: 10.3390/ijms22158246. PubMed DOI PMC
Afgan E, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46:W537–W544. doi: 10.1093/nar/gky379. PubMed DOI PMC
Volenikova A, et al. Genome sequence and silkomics of the spindle ermine moth, Yponomeuta cagnagella, representing the early diverging lineage of the ditrysian Lepidoptera. Commun Biol. 2022;5(1):1281. doi: 10.1038/s42003-022-04240-9. PubMed DOI PMC
Seppey M, Manni M, Zdobnov EM. BUSCO: Assessing Genome Assembly and Annotation Completeness. Methods Mol Biol. 1962;227–245:2019. doi: 10.1007/978-1-4939-9173-0_14. PubMed DOI
Austin M, et al. The genome sequence of a caddisfly, Limnephilus lunatus (Curtis, 1834) Wellcome Open Res. 2023;8:25. doi: 10.12688/wellcomeopenres.18752.1. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11:2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI
R Studio Team. RStudio: Integrated development environment for R. Available at: https://www.rstudio.com/. 2015.
R Core Team. R: A language and environment for statistical computing. Available at: https://www.R-project.org/. 2017.
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–235. doi: 10.1093/nar/gkw256. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Characterization and comparative analysis of sericin protein 150 in Bombyx mori