Characterization and comparative analysis of sericin protein 150 in Bombyx mori
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
BYCZ01-039
Interreg
PubMed
39251726
PubMed Central
PMC11385562
DOI
10.1038/s41598-024-71503-2
PII: 10.1038/s41598-024-71503-2
Knihovny.cz E-zdroje
- Klíčová slova
- Galleria mellonella, CXCXCX, Mucin, SP150, Silk glands, Synteny,
- MeSH
- bourec * genetika metabolismus MeSH
- fylogeneze * MeSH
- hedvábí metabolismus genetika chemie MeSH
- hmyzí proteiny genetika metabolismus chemie MeSH
- sekvence aminokyselin MeSH
- sericiny * metabolismus genetika chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- hedvábí MeSH
- hmyzí proteiny MeSH
- sericiny * MeSH
Lepidopteran silk is a complex mixture of proteins, consisting mainly of fibroins and sericins. Sericins are a small family of highly divergent proteins that serve as adhesives and coatings for silk fibers. So far, five genes encoding sericin proteins have been identified in Bombyx mori. Having previously identified sericin protein 150 (SP150) as a major sericin-like protein in the cocoons of the pyralid moths Galleria mellonella and Ephestia kuehniella, we describe the identification of its homolog in B. mori. Our refined gene model shows that it consists of four exons and a long open reading frame with a conserved motif, CXCXCX, at the C-terminus, reminiscent of the structure observed in a class of mucin proteins. Notably, despite a similar expression pattern, both mRNA and protein levels of B. mori SP150 were significantly lower than those of its pyralid counterpart. We also discuss the synteny of homologous genes on corresponding chromosomes in different moth species and the possible phylogenetic relationships between SP150 and certain mucin-like proteins. Our results improve our understanding of silk structure and the evolutionary relationships between adhesion proteins in the silk of different lepidopteran species.
Zobrazit více v PubMed
Tanaka, K., Mori, K. & Mizuno, S. Immunological identification of the major disulfide-linked light component of silk fibroin. J. Biochem.-Tokyo114, 1–4 (1993). 10.1093/oxfordjournals.jbchem.a124122 PubMed DOI
Zurovec, M., Kodrik, D., Yang, C., Sehnal, F. & Scheller, K. The P25 component of Galleria silk. Mol. Gen. Genet.257, 264–270 (1998). 10.1007/s004380050647 PubMed DOI
Zurovec, M., Vaskova, M., Kodrik, D., Sehnal, F. & Kumaran, A. K. Light-chain fibroin of Galleria mellonella L. Mol. Gen. Genet.247, 1–6 (1995). 10.1007/BF00425815 PubMed DOI
Lucas, F. & Rudall, K. M. in Comprehensive Biochemistry, vol. 26 (eds Florkin, M. & Stotz, E. H.)s 475–558 (Elsevier, 1968).
Sehnal, F. & Sutherland, T. Silks produced by insect labial glands. Prion2, 145–153. 10.4161/pri.2.4.7489 (2008). 10.4161/pri.2.4.7489 PubMed DOI PMC
Shibukawa, A. Studies on the silk substance within the silk gland in the silkworm, Bombyx mori L. Bull. Sericult. Exp. Sta.15, 401 (1959).
Okamoto, H., Ishikawa, E. & Suzuki, Y. Structural analysis of sericin genes. Homologies with fibroin gene in the 5’ flanking nucleotide sequences. J. Biol. Chem.257, 15192–15199 (1982). 10.1016/S0021-9258(18)33412-4 PubMed DOI
Takasu, Y. et al. Identification and characterization of a novel sericin gene expressed in the anterior middle silk gland of the silkworm Bombyx mori. Insect. Biochem. Mol. Biol.37, 1234–1240. 10.1016/j.ibmb.2007.07.009 (2007). 10.1016/j.ibmb.2007.07.009 PubMed DOI
Takasu, Y., Iizuka, T., Zhang, Q. & Sezutsu, H. Modified cocoon sericin proteins produced by truncated Bombyx Ser1 gene. J. Silk Sci. Technol. Jpn.25, 35–47. 10.11417/silk.25.35 (2017).10.11417/silk.25.35 DOI
Dong, Z. M. et al. Identification of Bombyx mori sericin 4 protein as a new biological adhesive. Int. J. Biol. Macromol.132, 1121–1130. 10.1016/j.ijbiomac.2019.03.166 (2019). 10.1016/j.ijbiomac.2019.03.166 PubMed DOI
Guo, K. et al. Identification and characterization of sericin5 reveals non-cocoon silk sericin components with high beta-sheet content and adhesive strength. Acta Biomater.150, 96–110. 10.1016/j.actbio.2022.07.021 (2022). 10.1016/j.actbio.2022.07.021 PubMed DOI
Kludkiewicz, B. et al. Structure and expression of the silk adhesive protein Ser2 in Bombyx mori. Insect Biochem. Mol.39, 938–946. 10.1016/j.ibmb.2009.11.005 (2009).10.1016/j.ibmb.2009.11.005 PubMed DOI
Michaille, J. J., Garel, A. & Prudhomme, J. C. Cloning and characterization of the highly polymorphic Ser2 gene of Bombyx-Mori. Gene86, 177–184. 10.1016/0378-1119(90)90277-X (1990). 10.1016/0378-1119(90)90277-X PubMed DOI
Wu, B. C. et al. Characterization of silk genes in Ephestia kuehniella and Galleria mellonella revealed duplication of sericin genes and highly divergent sequences encoding fibroin heavy chains. Front. Mol. Biosci.9, 1023381. 10.3389/fmolb.2022.1023381 (2022). 10.3389/fmolb.2022.1023381 PubMed DOI PMC
Kludkiewicz, B. et al. The expansion of genes encoding soluble silk components in the greater wax moth, Galleria mellonella. Insect Biochem. Mol. Biol.106, 28–38. 10.1016/j.ibmb.2018.11.003 (2019). 10.1016/j.ibmb.2018.11.003 PubMed DOI
Rouhova, L. et al. Silk of the common clothes moth, Tineola bisselliella, a cosmopolitan pest belonging to the basal ditrysian moth line. Insect Biochem. Mol.10.1016/j.ibmb.2021.103527 (2021).10.1016/j.ibmb.2021.103527 PubMed DOI
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120. 10.1093/bioinformatics/btu170 (2014). 10.1093/bioinformatics/btu170 PubMed DOI PMC
Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21. 10.1093/bioinformatics/bts635 (2013). 10.1093/bioinformatics/bts635 PubMed DOI PMC
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol.29, 24–26. 10.1038/nbt.1754 (2011). 10.1038/nbt.1754 PubMed DOI PMC
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol.34, 525–527. 10.1038/nbt.3519 (2016). 10.1038/nbt.3519 PubMed DOI
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res.29, e45. 10.1093/nar/29.9.e45 (2001). 10.1093/nar/29.9.e45 PubMed DOI PMC
Zabelina, V. et al. Mutation in Bombyx mori fibrohexamerin (P25) gene causes reorganization of rough endoplasmic reticulum in posterior silk gland cells and alters morphology of fibroin secretory globules in the silk gland lumen. Insect. Biochem. Mol. Biol.135, 103607. 10.1016/j.ibmb.2021.103607 (2021). 10.1016/j.ibmb.2021.103607 PubMed DOI
Hughes, C. S. et al. Single-pot, solid-phase-enhanced sample preparation for proteomics experiments. Nat. Protoc.14, 68–85. 10.1038/s41596-018-0082-x (2019). 10.1038/s41596-018-0082-x PubMed DOI
Zhang, Y. et al. Comparative proteome analysis of multi-layer cocoon of the silkworm, Bombyx mori. PLoS One10, e0123403. 10.1371/journal.pone.0123403 (2015). 10.1371/journal.pone.0123403 PubMed DOI PMC
Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteom.13, 2513–2526. 10.1074/mcp.M113.031591 (2014).10.1074/mcp.M113.031591 PubMed DOI PMC
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods13, 731–740. 10.1038/nmeth.3901 (2016). 10.1038/nmeth.3901 PubMed DOI
Lou, R. et al. Benchmarking commonly used software suites and analysis workflows for DIA proteomics and phosphoproteomics. Nat. Commun.14, 94. 10.1038/s41467-022-35740-1 (2023). 10.1038/s41467-022-35740-1 PubMed DOI PMC
Visser, S., Volenikova, A., Nguyen, P., Verhulst, E. C. & Marec, F. A conserved role of the duplicated Masculinizer gene in sex determination of the Mediterranean flour moth, Ephestia kuehniella. PLoS Genet.17, e1009420. 10.1371/journal.pgen.1009420 (2021). 10.1371/journal.pgen.1009420 PubMed DOI PMC
Lovell, J. T. et al. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. Elife.10.7554/eLife.78526 (2022). 10.7554/eLife.78526 PubMed DOI PMC
Wickham, H. ggplot2: Elegant graphics for data analysis. Use R, 1–212. 10.1007/978-0-387-98141-3 (2009).
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol.33, 1870–1874. 10.1093/molbev/msw054 (2016). 10.1093/molbev/msw054 PubMed DOI PMC
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol.35, 518–522. 10.1093/molbev/msx281 (2018). 10.1093/molbev/msx281 PubMed DOI PMC
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol.32, 268–274. 10.1093/molbev/msu300 (2015). 10.1093/molbev/msu300 PubMed DOI PMC
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods14, 587. 10.1038/Nmeth.4285 (2017). 10.1038/Nmeth.4285 PubMed DOI PMC
Dong, Z. et al. Comparative proteomics reveal diverse functions and dynamic changes of Bombyx mori silk proteins spun from different development stages. J. Proteome Res.12, 5213–5222. 10.1021/pr4005772 (2013). 10.1021/pr4005772 PubMed DOI
Wang, J. et al. Vertebrate gene predictions and the problem of large genes. Nat. Rev. Genet.4, 741–749. 10.1038/nrg1160 (2003). 10.1038/nrg1160 PubMed DOI
Levin, M. & Butter, F. Proteotranscriptomics—A facilitator in omics research. Comput. Struct. Biotechnol.20, 3667–3675. 10.1016/j.csbj.2022.07.007 (2022).10.1016/j.csbj.2022.07.007 PubMed DOI PMC
Sezutsu, H. & Yukuhiro, K. Dynamic rearrangement within the silk fibroin gene is associated with four types of repetitive units. J. Mol. Evol.51, 329–338. 10.1007/s002390010095 (2000). 10.1007/s002390010095 PubMed DOI
Rouhova, L. et al. Comprehensive analysis of silk proteins and gland compartments in Limnephilus lunatus, a case-making trichopteran. BMC Genom.25, 472. 10.1186/s12864-024-10381-4 (2024).10.1186/s12864-024-10381-4 PubMed DOI PMC
Li, Y. R., Wei, Y. K., Zhang, G. Z. & Zhang, Y. S. Sericin from fibroin-deficient silkworms served as a promising resource for biomedicine. Polymers-Basel.10.3390/polym15132941 (2023). 10.3390/polym15132941 PubMed DOI PMC
Prasong, S., Yaowalak, S. & Wilaiwan, S. Characteristics of silk fiber with and without sericin component: A comparison between Bombyx mori and Philosamia ricini silks. Pak. J. Biol. Sci.12, 872–876 (2009). 10.3923/pjbs.2009.872.876 PubMed DOI
Muller, Y. A., Heiring, C., Misselwitz, R., Welfle, K. & Welfle, H. The cystine knot promotes folding and not thermodynamic stability in vascular endothelial growth factor. J. Biol. Chem.277, 43410–43416. 10.1074/jbc.M206438200 (2002). 10.1074/jbc.M206438200 PubMed DOI
Brown, J. C. Role of gene length in control of human gene expression: Chromosome-specific and tissue-specific effects. Int. J. Genom.10.1155/2021/8902428 (2021).10.1155/2021/8902428 PubMed DOI PMC
Castillo-Davis, C. I., Mekhedov, S. L., Hartl, D. L., Koonin, E. V. & Kondrashov, F. A. Selection for short introns in highly expressed genes. Nat. Genet.31, 415–418. 10.1038/ng940 (2002). 10.1038/ng940 PubMed DOI
Gai, T. T. et al. Cocoonase is indispensable for Lepidoptera insects breaking the sealed cocoon. PLoS Genet.10.1371/journal.pgen.1009004 (2020). 10.1371/journal.pgen.1009004 PubMed DOI PMC