Characterization of silk genes in Ephestia kuehniella and Galleria mellonella revealed duplication of sericin genes and highly divergent sequences encoding fibroin heavy chains

. 2022 ; 9 () : 1023381. [epub] 20221129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36523651

Silk is a secretory product of numerous arthropods with remarkable mechanical properties. In this work, we present the complete sequences of the putative major silk proteins of E. kuehniella and compare them with those of G. mellonella, which belongs to the same moth family Pyralidae. To identify the silk genes of both species, we combined proteomic analysis of cocoon silk with a homology search in transcriptomes and genomic sequences to complement the information on both species. We analyzed structure of the candidate genes obtained, their expression specificity and their evolutionary relationships. We demonstrate that the silks of E. kuehniella and G. mellonella differ in their hydrophobicity and that the silk of E. kuehniella is highly hygroscopic. In our experiments, we show that the number of genes encoding sericins is higher in G. mellonella than in E. kuehniella. By analyzing the synteny of the chromosomal segment encoding sericin genes in both moth species, we found that the region encoding sericins is duplicated in G. mellonella. Finally, we present the complete primary structures of nine fibH genes and proteins from both families of the suborder Pyraloidea and discuss their specific and conserved features. This study provides a foundation for future research on the evolution of silk proteins and lays the groundwork for future detailed functional studies.

Zobrazit více v PubMed

Afgan E., Baker D., Batut B., van den Beek M., Bouvier D., Cech M., et al. (2018). The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46 (W1), W537–W544. 10.1093/nar/gky379 PubMed DOI PMC

Blaxter M. L., Project D. T. L. (2022). Sequence locally, think globally: The Darwin tree of life project. Proc. Natl. Acad. Sci. U. S. A. 119 (4), e2115642118. 10.1073/pnas.2115642118 PubMed DOI PMC

Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N., Mann M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13 (9), 2513–2526. 10.1074/mcp.M113.031591 PubMed DOI PMC

Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., Mann M. (2011). Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10 (4), 1794–1805. 10.1021/pr101065j PubMed DOI

Craig C. L. (1997). Evolution of arthropod silks. Annu. Rev. Entomol. 42, 231–267. 10.1146/annurev.ento.42.1.231 PubMed DOI

Davey P. A., Power A. M., Santos R., Bertemes P., Ladurner P., Palmowski P., et al. (2021). Omics-based molecular analyses of adhesion by aquatic invertebrates. Biol. Rev. Camb. Philos. Soc. 96 (3), 1051–1075. 10.1111/brv.12691 PubMed DOI

Deny M. W. (1980). Silks--their properties and functions. Symp. Soc. Exp. Biol. 34, 247–272. PubMed

Dong Z. M., Guo K. Y., Zhang X. L., Zhang T., Zhang Y., Ma S. Y., et al. (2019). Identification of Bombyx mori sericin 4 protein as a new biological adhesive. Int. J. Biol. Macromol. 132, 1121–1130. 10.1016/j.ijbiomac.2019.03.166 PubMed DOI

Ellis A. M., Hayes G. W. (2009). Assessing the efficacy of a product containing Bacillus thuringiensis applied to honey bee (hymenoptera: Apidae) foundation as a control for Galleria mellonella (Lepidoptera: Pyralidae). J. Entomol. Sci. 44 (2), 158–163. 10.18474/0749-8004-44.2.158 DOI

Erban T., Klimov P., Talacko P., Harant K., Hubert J. (2020). Proteogenomics of the house dust mite, Dermatophagoides farinae: Allergen repertoire, accurate allergen identification, isoforms, and sex-biased proteome differences. J. Proteomics 210, 103535. 10.1016/j.jprot.2019.103535 PubMed DOI

Fedic R., Zurovec M., Sehnal F. (2003). Correlation between fibroin amino acid sequence and physical silk properties. J. Biol. Chem. 278 (37), 35255–35264. 10.1074/jbc.M305304200 PubMed DOI

Gamo T. (1982). Genetic variants of the Bombyx mori silkworn encoding sericin proteins of different lengths. Biochem. Genet. 20 (1-2), 165–177. 10.1007/BF00484944 PubMed DOI

Hall T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl. Acids. Symp. Ser. 41, 95–98. 10.14601/Phytopathol_Mediterr-14998u1.29 DOI

Hasan K., Kayumov J., Zhu G., Khatun M., Nur A., Dings X. (2019). An experimental investigation to examine the wicking properties of silk fabrics. J. Text. Sci. Technol. 5 (4), 108–124. 10.4236/jtst.2019.54010 DOI

Hughes C. S., Foehr S., Garfield D. A., Furlong E. E., Steinmetz L. M., Krijgsveld J. (2014). Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol. 10 (10), 757. 10.15252/msb.20145625 PubMed DOI PMC

Jacob T. A., Cox P. D. (1977). The influence of temperature and humidity on the life-cycle of Ephestia kuehniella zeller (Lepidoptera: Pyralidae). J. Stored Prod. Res. 13 (3), 107–118. 10.1016/0022-474x(77)90009-1 DOI

Jin T. Q., Ito Y., Luan X. H., Dangaria S., Walker C., Allen M., et al. (2009). Elongated polyproline motifs facilitate enamel evolution through matrix subunit compaction. PLoS Biol. 7 (12), e1000262. 10.1371/journal.pbio.1000262 PubMed DOI PMC

Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., von Haeseler A., Jermiin L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14 (6), 587–589. 10.1038/Nmeth.4285 PubMed DOI PMC

Kludkiewicz B., Kucerova L., Konikova T., Strnad H., Hradilova M., Zaloudikova A., et al. (2019). The expansion of genes encoding soluble silk components in the greater wax moth, Galleria mellonella. Insect biochem. Mol. Biol. 106, 28–38. 10.1016/j.ibmb.2018.11.003 PubMed DOI

Kumar S., Stecher G., Tamura K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (7), 1870–1874. 10.1093/molbev/msw054 PubMed DOI PMC

Kyte J., Doolittle R. F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157 (1), 105–132. 10.1016/0022-2836(82)90515-0 PubMed DOI

Levine J. D., Sauman I., Imbalzano M., Reppert S. M., Jackson F. R. (1995). Period protein from the giant silkmoth Antheraea pernyi functions as a circadian clock element in Drosophila melanogaster . Neuron 15 (1), 147–157. 10.1016/0896-6273(95)90072-1 PubMed DOI

Li H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34 (18), 3094–3100. 10.1093/bioinformatics/bty191 PubMed DOI PMC

Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25 (4), 402–408. 10.1006/meth.2001.1262 PubMed DOI

Lucas F., Rudall K. M. (1968). “Extracellular fibrous proteins: The silks,” in Comprehensive biochemistry. Editors Florkin M., Stotz E. H. (Amsterdam: Elsevier; ), 475–558.

Marec F., Traut W. (1994). Sex-chromosome pairing and sex-chromatin bodies in W-Z translocation strains of ephestia-kuehniella (Lepidoptera). Genome 37 (3), 426–435. 10.1139/g94-060 PubMed DOI

Nguyen L. T., Schmidt H. A., von Haeseler A., Minh B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32 (1), 268–274. 10.1093/molbev/msu300 PubMed DOI PMC

Opell B. D., Stellwagen S. D. (2019). Properties of orb weaving spider glycoprotein glue change during Argiope trifasciata web construction. Sci. Rep. 9 (1), 20279. 10.1038/s41598-019-56707-1 PubMed DOI PMC

Perez-Vilar J., Hill R. L. (1999). The structure and assembly of secreted mucins. J. Biol. Chem. 274 (45), 31751–31754. 10.1074/jbc.274.45.31751 PubMed DOI

Prudhomme J., C., Couble P., Garel J. P., Daillie J. (1985). “Silk synthesis,” in Comprehensive insect physiology, biochemistry and pharmacology. Editors Kerkut G. A., Gilbert L. I. (New York: Pergamon; ), 571–594.

Rappsilber J., Mann M., Ishihama Y. (2007). Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2 (8), 1896–1906. 10.1038/nprot.2007.261 PubMed DOI

Regier J. C., Mitter C., Solis M. A., Hayden J. E., Landry B., Nuss M., et al. (2012). A molecular phylogeny for the pyraloid moths (Lepidoptera: Pyraloidea) and its implications for higher-level classification. Syst. Entomol. 37 (4), 635–656. 10.1111/j.1365-3113.2012.00641.x DOI

Rouhova L., Kludkiewicz B., Sehadova H., Sery M., Kucerova L., Konik P., et al. (2021). Silk of the common clothes moth, Tineola bisselliella, a cosmopolitan pest belonging to the basal ditrysian moth line. Insect biochem. Mol. Biol. 130, 103527. 10.1016/j.ibmb.2021.103527 PubMed DOI

Rouhová L., Sehadová H., Pauchová L., Hradilová M., Žurovcová M., Šerý M., et al. (2022). Using the multi-omics approach to reveal the silk composition in Plectrocnemia conspersa. Front. Mol. Biosci. 9, 945239. 10.3389/fmolb.2022.945239 PubMed DOI PMC

Sehnal F. (1966). Kritisches studium der bionomie und biometrik der in verschiedenen lebensbedingungen gezuchteten wachsmotte Galleria mellonella L (lepidopera). Z. Fur Wiss. Zool. 174 (1-2), 53.

Shimura K., Kikuchi A., Katagata Y., Ohotomo K. (1982). The occurrence of small component proteins in the cocoon fibroin of Bombyx mori . J. Seric. Sci. Jap. 51 (1), 20–26. 10.11416/kontyushigen1930.51.20 DOI

Simao F. A., Waterhouse R. M., Ioannidis P., Kriventseva E. V., Zdobnov E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31 (19), 3210–3212. 10.1093/bioinformatics/btv351 PubMed DOI

Sonwalkar T. N. (1993). Hand book of silk technology. New Delhi: Wiley Eastern.

Stanke M., Morgenstern B. (2005). Augustus: A web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, W465–W467. 10.1093/nar/gki458 PubMed DOI PMC

Syed Z. A., Hard T., Uv A., van Dijk-Hard I. F. (2008). A potential role for Drosophila mucins in development and physiology. Plos One 3 (8), e3041. 10.1371/journal.pone.0003041 PubMed DOI PMC

Takasu Y., Iizuka T., Zhang Q., Sezutsu H. (2017). Modified cocoon sericin proteins produced by truncated Bombyx Ser1 gene. J. Silk Sci. Technol. Jpn. 25, 35–47. 10.11417/silk.25.35 DOI

Takasu Y., Yamada H., Tamura T., Sezutsu H., Mita K., Tsubouchi K. (2007). Identification and characterization of a novel sericin gene expressed in the anterior middle silk gland of the silkworm Bombyx mori . Insect biochem. Mol. Biol. 37 (11), 1234–1240. 10.1016/j.ibmb.2007.07.009 PubMed DOI

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., et al. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13 (9), 731–740. 10.1038/nmeth.3901 PubMed DOI

Visser S., Volenikova A., Nguyen P., Verhulst E. C., Marec F. (2021). A conserved role of the duplicated Masculinizer gene in sex determination of the Mediterranean flour moth, Ephestia kuehniella. PLoS Genet. 17 (8), e1009420. 10.1371/journal.pgen.1009420 PubMed DOI PMC

Wickham H. (2009). ggplot2: Elegant graphics for data analysis. Berlin, Germany: Springer Science & Business Media, 1–212. 10.1007/978-0-387-98141-3 DOI

Zurovec M., Kodrik D., Yang C., Sehnal F., Scheller K. (1998). The P25 component of Galleria silk. Mol. Gen. Genet. 257 (3), 264–270. 10.1007/s004380050647 PubMed DOI

Zurovec M., Sehnal F., Scheller K., Kumaran A. K. (1992). Silk gland specific cdnas from galleria-mellonella L. Insect Biochem. Mol. Biol. 22 (1), 55–67. 10.1016/0965-1748(92)90100-S DOI

Zurovec M., Vaskova M., Kodrik D., Sehnal F., Kumaran A. K. (1995). Light-chain fibroin of Galleria mellonella L. Mol. Gen. Genet. 247 (1), 1–6. 10.1007/BF00425815 PubMed DOI

Zurovec M., Yonemura N., Kludkiewicz B., Sehnal F., Kodrik D., Vieira L. C., et al. (2016). Sericin composition in the silk of Antheraea yamamai. Biomacromolecules 17 (5), 1776–1787. 10.1021/acs.biomac.6b00189 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...