• This record comes from PubMed

Absence of fibroin H sequences and a significant divergence in the putative fibroin L homolog in Neomicropteryx cornuta (Micropterigidae) silk

. 2025 Mar 13 ; 8 (1) : 434. [epub] 20250313

Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
BYCZ01-039 EC | Europski Fond za Regionalni Razvoj | Interreg

Links

PubMed 40082689
PubMed Central PMC11906653
DOI 10.1038/s42003-025-07801-w
PII: 10.1038/s42003-025-07801-w
Knihovny.cz E-resources

Micropterigidae is regarded as the sister group of all the other Lepidoptera, providing important insights into the evolution of Lepidoptera. However, the gene and protein profiles of silk from Micropterigidae have not yet been identified. In this study, we investigate the components of silk cocoons of the micropterigid species Neomicropteryx cornuta. Here we show that the protein fibroin heavy chain (FibH) is absent in the silk of N. cornuta and that the putative homolog of fibroin light chain (FibL) is also absent or severely altered. This is confirmed by transcriptome and genome analyses of the conserved regions in this species. The examination of the synteny around the fibH genes in several Lepidoptera and Trichoptera species shows that the genomic region containing this gene is absent in another micropterigid species, Micropterix aruncella. In contrast, we found putative orthologs of fibH and fibL in the representative transcripts of another distinct clade, Eriocraniidae. This study shows that the loss of FibH and the loss or severe divergence of FibL occurrs specifically in the family Micropterigidae and reveals dynamic evolutionary changes in silk composition during the early evolution of Lepidoptera. It also shows that silk proteins without FibH can form a solid cocoon.

See more in PubMed

Kenchington, W. Biological and chemical aspects of silks and silk-like materials produced by arthropods. S. Pac. J. Nat. Sci.5, 10–45 (1984).

Sutherland, T. D., Young, J. H., Weisman, S., Hayashi, C. Y. & Merritt, D. J. Insect silk: one name, many materials. Annu Rev. Entomol.55, 171–188 (2010). PubMed

Beutel, R. G., Friedrich, F., Ge, S.-Q. & Yang, X. K. Insect Morphology and Phylogeny: A Textbook For Students of Entomology Vol. 531 (De Gruyter, 2014).

Kristensen, N. P. e. Lepidoptera, Moths and butterflies. Vol. 1: Evolution, Systematics and Biogeography. Handbook of Zoology Vol. IV (De Gruyter, 1999).

Sehnal, F. & Zurovec, M. Construction of silk fiber core in lepidoptera. Biomacromolecules5, 666–674 (2004). PubMed

Akai, H. In Insect Ultrastructure (eds King, R. C. & Akai, H.) 323–364 (Plenum Press, New York, 1984).

Kludkiewicz, B. et al. The expansion of genes encoding soluble silk components in the greater wax moth, Galleria mellonella. Insect Biochem. Mol. Biol.106, 28–38 (2019). PubMed

Takasu, Y., Yamada, H. & Tsubouchi, K. Isolation of three main sericin components from the cocoon of the silkworm. Bombyx. Mori. Biosci. Biotech. Bioch.66, 2715–2718 (2002). PubMed

Rouhova, L. et al. Comprehensive analysis of silk proteins and gland compartments in Limnephilus lunatus, a case-making trichopteran. Bmc Genomics25, 472 (2024). PubMed PMC

Rouhova, L. et al. Using the multi-omics approach to reveal the silk composition in Plectrocnemia conspersa. Front Mol. Biosci.9, 945239 (2022). PubMed PMC

Fedic, R., Zurovec, M. & Sehnal, F. Correlation between fibroin amino acid sequence and physical silk properties. J. Biol. Chem.278, 35255–35264 (2003). PubMed

Heckenhauer, J. et al. Characterization of the primary structure of the major silk gene, h-fibroin, across caddisfly (Trichoptera) suborders. iScience26, 107253 (2023). PubMed PMC

Yonemura, N., Mita, K., Tamura, T. & Sehnal, F. Conservation of silk genes in Trichoptera and Lepidoptera. J. Mol. Evol.68, 641–653 (2009). PubMed PMC

Zurovec, M. et al. Functional conservation and structural diversification of silk sericins in two moth species. Biomacromolecules14, 1859–1866 (2013). PubMed

Regier, J. C. et al. A molecular phylogeny for the oldest (nonditrysian) lineages of extant Lepidoptera, with implications for classification, comparative morphology and life-history evolution. Syst. Entomol.40, 671–704 (2015).

Shimura, K., Kikuchi, A., Ohtomo, K., Katagata, Y. & A, H. Studies on silk fibroin of Bombyx mori. I. Fractionation of fibroin prepared from the posterior silk gland. J. Biochem.80, 693–702 (1976). PubMed

Kawahara, Y. et al. Comprehensive study on the formation of higher-order structure of bombyx mori silkworm fibers: influence of sericin fractions, modulation of spinning process, and metal ion interactions. J. Fiber Sci. Technol.74, 95–108 (2018).

Liao, C. Q. et al. Higher-level phylogeny and evolutionary history of nonditrysians (Lepidoptera) inferred from mitochondrial genome sequences. Zool. J. Linn. Soc. Lond.198, 476–493 (2023).

Hu, W. B., Lu, W., Wei, L. W., Zhang, Y. & Xia, Q. Y. Molecular nature of dominant naked pupa mutation reveals novel insights into silk production. Insect Biochem. Molec.109, 52–62 (2019). PubMed

Mase, K., Iizuka, T., Okada, E., Miyajima, T. & Yamamoto, T. A new silkworm race for sericin production, “SERICIN HOPE” and its product, “VIRGIN SERICIN”. J. Insect Biotechnol. Sericol.75, 85–88 (2006).

Wu, B. C. et al. Characterization of silk genes in Ephestia kuehniella and Galleria mellonella revealed duplication of sericin genes and highly divergent sequences encoding fibroin heavy chains. Front Mol. Biosci.9, 1023381 (2022). PubMed PMC

Teshome, A., Vollrath, F., Raina, S. K., Kabaru, J. M. & Onyari, J. Study on the microstructure of African wild silk cocoon shells and fibers. Int. J. Biol. Macromol.50, 63–68 (2012). PubMed

Davis, D. R. & Landry, J. F. A review of the North American genus Epimartyria (Lepidoptera, Micropterigidae) with a discussion of the larval plastron. Zookeys183, 37–83 (2012). PubMed PMC

Klausnitzer, B., Meyer, E., Kössler, W. & Eisenbeis, G. On the larval morphology of micropterix arincella (Scopoli, 1763). Beitrage Ent.52, 353–356 (2002).

Wang, X., Li, Y., Liu, Q., Xia, Q. & Zhao, P. Proteome profile of spinneret from the silkworm, Bombyx mori. Proteomics10.1002/pmic.201600301 (2017). PubMed

Heath, J. In Micropterigidae—Heliozelidae Vol. 1 The Moths and Butterflies of Great Britain and Ireland (eds Langmaid, J., Emmet, A. M., & Heath, J.) 151 (Harley Books, 1976).

Imada, Y., Kawakita, A. & Kato, M. Allopatric distribution and diversification without niche shift in a bryophyte-feeding basal moth lineage (Lepidoptera: Micropterigidae). P. Roy Soc. B. Biol. Sci.278, 3026–3033 (2011). PubMed PMC

Levine, J. D., Sauman, I., Imbalzano, M., Reppert, S. M. & Jackson, F. R. Period protein from the giant silkmoth Antheraea pernyi functions as a circadian clock element in Drosophila melanogaster. Neuron15, 147–157 (1995). PubMed

Rouhova, L. et al. Silk of the common clothes moth, Tineola bisselliella, a cosmopolitan pest belonging to the basal ditrysian moth line. Insect Biochem. Molec.130, 103527 (2021). PubMed

Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res.46, W537–W544 (2018). PubMed PMC

Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics31, 3210–3212 (2015). PubMed

Hughes, C. S. et al. Ultrasensitive proteome analysis using paramagnetic bead technology. Mol. Syst. Biol.10, 757 (2014). PubMed PMC

Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment. Nat. Protoc.2, 1896–1906 (2007). PubMed

Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res.10, 1794–1805 (2011). PubMed

Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser.41, 95–98 (1999).

Stothard, P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques28, 1102 (2000). PubMed

Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol.33, 1870–1874 (2016). PubMed PMC

Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol.32, 268–274 (2015). PubMed PMC

Kalyaanamoorthy, S. et al. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods14, 587–589 (2017). PubMed PMC

Xie, J. M. et al. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees. Nucleic Acids Res.51, W587–W592 (2023). PubMed PMC

Li, X. et al. First annotated genome of a mandibulate moth, Neomicropteryx cornuta, generated using PacBio HiFi sequencing. Genome Biol. Evol.13, evab229 (2021). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...