Leptospira interrogans Outer Membrane Protein-Based Nanohybrid Sensor for the Diagnosis of Leptospirosis

. 2021 Apr 06 ; 21 (7) : . [epub] 20210406

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33917354

Leptospirosis is an underestimated tropical disease caused by the pathogenic Leptospira species and responsible for several serious health problems. Here, we aimed to develop an ultrasensitive DNA biosensor for the rapid and on-site detection of the Loa22 gene of Leptospira interrogans using a gold nanoparticle-carbon nanofiber composite (AuN/CNF)-based screen-printed electrode. Cyclic voltammetry and electrochemical impedance were performed for electrochemical analysis. The sensitivity of the sensor was 5431.74 μA/cm2/ng with a LOD (detection limit) of 0.0077 ng/μL using cyclic voltammetry. The developed DNA biosensor was found highly specific to the Loa22 gene of L. interrogans, with a storage stability at 4 °C for 180 days and a 6% loss of the initial response. This DNA-based sensor only takes 30 min for rapid detection of the pathogen, with a higher specificity and sensitivity. The promising results obtained suggest the application of the developed sensor as a point of care device for the diagnosis of leptospirosis.

Zobrazit více v PubMed

Levett P.N., Morey R.E., Galloway R.L., Turner D.E., Steigerwalt A.G., Mayer L.W. Detection of pathogenic leptospires by real-time quantitative PCR. J. Med. Microbiol. 2005;54:45–49. doi: 10.1099/jmm.0.45860-0. PubMed DOI

Mohammed H., Nozha C., Hakim K., Abdelaziz F., Rekia B. Leptospira: Morphology, classification and pathogenesis. J. Bacteriol. Parasitol. 2011;2:120–123. doi: 10.4172/2155-9597.1000120. DOI

Ooteman M.C., Vago A.R., Koury M.C. Evaluation of MAT, IgM ELISA and PCR methods for the diagnosis of human leptospirosis. J. Microbiol. Methods. 2006;65:247–257. doi: 10.1016/j.mimet.2005.07.015. PubMed DOI

Yupiana Y., Vallee E., Wilson P., Collins-Emerson J., Weston J., Benschop J., Heuer C. Emerging Leptospira strain poses public health risk for dairy farmers in New Zealand. Prev. Vet. Med. 2019;170:104727. doi: 10.1016/j.prevetmed.2019.104727. PubMed DOI

Waggoner J.J., Soda E.A., Seibert R., Grant P., Pinsky B.A. Molecular detection of Leptospira in two returned travelers: Higher bacterial load in cerebrospinal fluid versus serum or plasma. Am. J. Trop. Med. Hyg. 2015;93:238–240. doi: 10.4269/ajtmh.15-0174. PubMed DOI PMC

Techawiwattanaboon T., Patarakul K. Update on molecular diagnosis of human leptospirosis. Asian Biomed. 2020;13:207–216. doi: 10.1515/abm-2019-0063. DOI

Woods K., Nic-Fhogartaigh C., Arnold C., Boutthasavong L., Phuklia W., Lim C., Chanthongthip A., Tulsiani S.M., Craig S.B., Burns M.A., et al. A comparison of two molecular methods for diagnosing leptospirosis from three different sample types in patients presenting with fever in Laos. Clin. Microbiol. Infect. 2018;24:1017-e1. doi: 10.1016/j.cmi.2017.10.017. PubMed DOI PMC

Rao M., Amran F., Aqilla N. Evaluation of a rapid kit for detection of IgM against Leptospira in human. Can. J. Infect. Dis. Med. Microbiol. 2019;2019 doi: 10.1155/2019/5763595. PubMed DOI PMC

Najian A.N., Syafirah E.E.N., Ismail N., Mohamed M., Yean C.Y. Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira. Anal. Chim. Acta. 2016;903:142–148. doi: 10.1016/j.aca.2015.11.015. PubMed DOI

Esteves L.M., Bulhões S.M., Branco C.C., Carreira T., Vieira M.L., Gomes-Solecki M., Mota-Vieira L. Diagnosis of human leptospirosis in a clinical setting: Real-time PCR high resolution melting analysis for detection of Leptospira at the onset of disease. Sci. Rep. 2018;8:1–10. doi: 10.1038/s41598-018-27555-2. PubMed DOI PMC

Haake D.A., Levett P.N. Leptospirosis in humans. Curr. Top. Microbiol. Immunol. 2015;387:65–97. PubMed PMC

Ristow P., Bourhy P., da Cruz McBride F.W., Figueira C.P., Huerre M., Ave P., Saint Girons I., Ko A.I., Picardeau M. The OmpA-like protein Loa22 is essential for leptospiral virulence. PLoS Pathog. 2007;3:e97. doi: 10.1371/journal.ppat.0030097. PubMed DOI PMC

Justino C.I., Rocha-Santos T.A., Duarte A.C. Advances in point-of-care technologies with biosensors based on carbon nanotubes. Trends. Anal. Chem. 2013;45:24–36. doi: 10.1016/j.trac.2012.12.012. DOI

Wang D.S., Fan S.K. Microfluidic surface plasmon resonance sensors: From principles to point-of-care applications. Sensors. 2016;16:1175. doi: 10.3390/s16081175. PubMed DOI PMC

Thevenot D.R., Toth K., Durst R.A., Wilson G.S. Electrochemical biosensors: Recommended definitions and classification. Pure Appl. Chem. 1999;71:2333–2348. doi: 10.1351/pac199971122333. PubMed DOI

Kala D., Sharma T.K., Gupta S., Nagraik R., Verma V., Thakur A., Kaushal A. AuNPs/CNF-modified DNA biosensor for early and quick detection of O. tsutsugamushi in patients suffering from scrub typhus. 3 Biotech. 2020;10:1–13. doi: 10.1007/s13205-020-02432-w. PubMed DOI PMC

Singh S., Kaushal A., Gautam H., Gupta S., Kumar A. Ultrasensitive nanohybrid DNA sensor for detection of pathogen to prevent damage of heart valves. Sens. Actuator B Chem. 2017;246:300–304. doi: 10.1016/j.snb.2017.02.043. DOI

Kaushal A., Singh S., Kumar A., Kumar D. Nano-Au/cMWCNT modified speB gene specific amperometric sensor for rapidly detecting Streptococcus pyogenes causing rheumatic heart disease. Indian J. Microbiol. 2017;57:121–124. doi: 10.1007/s12088-016-0636-y. PubMed DOI PMC

Singh S., Kaushal A., Khare S., Kumar A. DNA chip based sensor for amperometric detection of infectious pathogens. Int. J. Biol. Macromol. 2017;103:355–359. doi: 10.1016/j.ijbiomac.2017.05.041. PubMed DOI

Verma V., Goyal M., Kala D., Gupta S., Kumar D., Kaushal A. Recent advances in the diagnosis of leptospirosis. Front. Biosci. 2020;25:1655–1681. PubMed

Kala D., Gupta S., Nagraik R., Verma V., Thakur A., Kaushal A. Diagnosis of scrub typhus: Recent advancements and challenges. 3 Biotech. 2020;10:1–21. doi: 10.1007/s13205-020-02389-w. PubMed DOI PMC

Peng H., Zhang L., Soeller C., Travas-Sejdic J. Conducting polymers for electrochemical DNA sensing. Biomaterials. 2009;30:2132–2148. doi: 10.1016/j.biomaterials.2008.12.065. PubMed DOI

Nagraik R., Kaushal A., Gupta S., Dhar P., Sethi S., Kumar D. Optimized DNA-based bioassay for Leptospira interrogans detection: A novel platform for leptospirosis diagnosis. 3 Biotech. 2019;9:284. doi: 10.1007/s13205-019-1815-4. PubMed DOI PMC

Singh R.P. Prospects of nanobiomaterials for biosensing. Int. J. Electrochem. Sci. 2011 doi: 10.4061/2011/125487. DOI

Pereira J.C., Chaves R., Bastos E., Leitão A., Guedes-Pinto H. An efficient method for genomic DNA extraction from different molluscs species. Int. J. Mol. Sci. 2011;12:8086–8095. doi: 10.3390/ijms12118086. PubMed DOI PMC

Dash S.K., Sharma M., Khare S., Kumar A. Omp85genosensor for detection of human brain bacterial meningitis. Biotechnol. Lett. 2013;35:929–935. doi: 10.1007/s10529-013-1161-2. PubMed DOI

Nagraik R., Kaushal A., Gupta S., Sethi S., Sharma A., Kumar D. Nanofabricated versatile electrochemical sensor for Leptospira interrogans detection. J. Biosci. Bioeng. 2020;129:441–446. doi: 10.1016/j.jbiosc.2019.11.003. PubMed DOI

Jampasa S., Lae-ngee P., Patarakul K., Ngamrojanavanich N., Chailapakul O., Rodthongkum N. Electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for leptospirosis diagnosis. Biosens. Bioelectron. 2019;142:111539. doi: 10.1016/j.bios.2019.111539. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...