Leptospira interrogans Outer Membrane Protein-Based Nanohybrid Sensor for the Diagnosis of Leptospirosis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33917354
PubMed Central
PMC8038715
DOI
10.3390/s21072552
PII: s21072552
Knihovny.cz E-zdroje
- Klíčová slova
- AuN/CNF, DNA sensor, Leptospira interrogans, Loa22 gene,
- MeSH
- kovové nanočástice * MeSH
- Leptospira interrogans * genetika MeSH
- leptospiróza * diagnóza MeSH
- lidé MeSH
- membránové proteiny MeSH
- zlato MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- membránové proteiny MeSH
- zlato MeSH
Leptospirosis is an underestimated tropical disease caused by the pathogenic Leptospira species and responsible for several serious health problems. Here, we aimed to develop an ultrasensitive DNA biosensor for the rapid and on-site detection of the Loa22 gene of Leptospira interrogans using a gold nanoparticle-carbon nanofiber composite (AuN/CNF)-based screen-printed electrode. Cyclic voltammetry and electrochemical impedance were performed for electrochemical analysis. The sensitivity of the sensor was 5431.74 μA/cm2/ng with a LOD (detection limit) of 0.0077 ng/μL using cyclic voltammetry. The developed DNA biosensor was found highly specific to the Loa22 gene of L. interrogans, with a storage stability at 4 °C for 180 days and a 6% loss of the initial response. This DNA-based sensor only takes 30 min for rapid detection of the pathogen, with a higher specificity and sensitivity. The promising results obtained suggest the application of the developed sensor as a point of care device for the diagnosis of leptospirosis.
Amity Center of Nanotechnology Amity University Gurugram 122413 HR India
College of Horticulture and Forestry Neri Hamirpur 177001 HP India
Faculty of Medicine University of Porto Alameda Prof Hernâni Monteiro 4200 319 Porto Portugal
Institute for Research and Innovation in Health University of Porto 4200 135 Porto Portugal
School of Bioengineering and Food Technology Shoolini University Solan 173229 HP India
Zobrazit více v PubMed
Levett P.N., Morey R.E., Galloway R.L., Turner D.E., Steigerwalt A.G., Mayer L.W. Detection of pathogenic leptospires by real-time quantitative PCR. J. Med. Microbiol. 2005;54:45–49. doi: 10.1099/jmm.0.45860-0. PubMed DOI
Mohammed H., Nozha C., Hakim K., Abdelaziz F., Rekia B. Leptospira: Morphology, classification and pathogenesis. J. Bacteriol. Parasitol. 2011;2:120–123. doi: 10.4172/2155-9597.1000120. DOI
Ooteman M.C., Vago A.R., Koury M.C. Evaluation of MAT, IgM ELISA and PCR methods for the diagnosis of human leptospirosis. J. Microbiol. Methods. 2006;65:247–257. doi: 10.1016/j.mimet.2005.07.015. PubMed DOI
Yupiana Y., Vallee E., Wilson P., Collins-Emerson J., Weston J., Benschop J., Heuer C. Emerging Leptospira strain poses public health risk for dairy farmers in New Zealand. Prev. Vet. Med. 2019;170:104727. doi: 10.1016/j.prevetmed.2019.104727. PubMed DOI
Waggoner J.J., Soda E.A., Seibert R., Grant P., Pinsky B.A. Molecular detection of Leptospira in two returned travelers: Higher bacterial load in cerebrospinal fluid versus serum or plasma. Am. J. Trop. Med. Hyg. 2015;93:238–240. doi: 10.4269/ajtmh.15-0174. PubMed DOI PMC
Techawiwattanaboon T., Patarakul K. Update on molecular diagnosis of human leptospirosis. Asian Biomed. 2020;13:207–216. doi: 10.1515/abm-2019-0063. DOI
Woods K., Nic-Fhogartaigh C., Arnold C., Boutthasavong L., Phuklia W., Lim C., Chanthongthip A., Tulsiani S.M., Craig S.B., Burns M.A., et al. A comparison of two molecular methods for diagnosing leptospirosis from three different sample types in patients presenting with fever in Laos. Clin. Microbiol. Infect. 2018;24:1017-e1. doi: 10.1016/j.cmi.2017.10.017. PubMed DOI PMC
Rao M., Amran F., Aqilla N. Evaluation of a rapid kit for detection of IgM against Leptospira in human. Can. J. Infect. Dis. Med. Microbiol. 2019;2019 doi: 10.1155/2019/5763595. PubMed DOI PMC
Najian A.N., Syafirah E.E.N., Ismail N., Mohamed M., Yean C.Y. Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira. Anal. Chim. Acta. 2016;903:142–148. doi: 10.1016/j.aca.2015.11.015. PubMed DOI
Esteves L.M., Bulhões S.M., Branco C.C., Carreira T., Vieira M.L., Gomes-Solecki M., Mota-Vieira L. Diagnosis of human leptospirosis in a clinical setting: Real-time PCR high resolution melting analysis for detection of Leptospira at the onset of disease. Sci. Rep. 2018;8:1–10. doi: 10.1038/s41598-018-27555-2. PubMed DOI PMC
Haake D.A., Levett P.N. Leptospirosis in humans. Curr. Top. Microbiol. Immunol. 2015;387:65–97. PubMed PMC
Ristow P., Bourhy P., da Cruz McBride F.W., Figueira C.P., Huerre M., Ave P., Saint Girons I., Ko A.I., Picardeau M. The OmpA-like protein Loa22 is essential for leptospiral virulence. PLoS Pathog. 2007;3:e97. doi: 10.1371/journal.ppat.0030097. PubMed DOI PMC
Justino C.I., Rocha-Santos T.A., Duarte A.C. Advances in point-of-care technologies with biosensors based on carbon nanotubes. Trends. Anal. Chem. 2013;45:24–36. doi: 10.1016/j.trac.2012.12.012. DOI
Wang D.S., Fan S.K. Microfluidic surface plasmon resonance sensors: From principles to point-of-care applications. Sensors. 2016;16:1175. doi: 10.3390/s16081175. PubMed DOI PMC
Thevenot D.R., Toth K., Durst R.A., Wilson G.S. Electrochemical biosensors: Recommended definitions and classification. Pure Appl. Chem. 1999;71:2333–2348. doi: 10.1351/pac199971122333. PubMed DOI
Kala D., Sharma T.K., Gupta S., Nagraik R., Verma V., Thakur A., Kaushal A. AuNPs/CNF-modified DNA biosensor for early and quick detection of O. tsutsugamushi in patients suffering from scrub typhus. 3 Biotech. 2020;10:1–13. doi: 10.1007/s13205-020-02432-w. PubMed DOI PMC
Singh S., Kaushal A., Gautam H., Gupta S., Kumar A. Ultrasensitive nanohybrid DNA sensor for detection of pathogen to prevent damage of heart valves. Sens. Actuator B Chem. 2017;246:300–304. doi: 10.1016/j.snb.2017.02.043. DOI
Kaushal A., Singh S., Kumar A., Kumar D. Nano-Au/cMWCNT modified speB gene specific amperometric sensor for rapidly detecting Streptococcus pyogenes causing rheumatic heart disease. Indian J. Microbiol. 2017;57:121–124. doi: 10.1007/s12088-016-0636-y. PubMed DOI PMC
Singh S., Kaushal A., Khare S., Kumar A. DNA chip based sensor for amperometric detection of infectious pathogens. Int. J. Biol. Macromol. 2017;103:355–359. doi: 10.1016/j.ijbiomac.2017.05.041. PubMed DOI
Verma V., Goyal M., Kala D., Gupta S., Kumar D., Kaushal A. Recent advances in the diagnosis of leptospirosis. Front. Biosci. 2020;25:1655–1681. PubMed
Kala D., Gupta S., Nagraik R., Verma V., Thakur A., Kaushal A. Diagnosis of scrub typhus: Recent advancements and challenges. 3 Biotech. 2020;10:1–21. doi: 10.1007/s13205-020-02389-w. PubMed DOI PMC
Peng H., Zhang L., Soeller C., Travas-Sejdic J. Conducting polymers for electrochemical DNA sensing. Biomaterials. 2009;30:2132–2148. doi: 10.1016/j.biomaterials.2008.12.065. PubMed DOI
Nagraik R., Kaushal A., Gupta S., Dhar P., Sethi S., Kumar D. Optimized DNA-based bioassay for Leptospira interrogans detection: A novel platform for leptospirosis diagnosis. 3 Biotech. 2019;9:284. doi: 10.1007/s13205-019-1815-4. PubMed DOI PMC
Singh R.P. Prospects of nanobiomaterials for biosensing. Int. J. Electrochem. Sci. 2011 doi: 10.4061/2011/125487. DOI
Pereira J.C., Chaves R., Bastos E., Leitão A., Guedes-Pinto H. An efficient method for genomic DNA extraction from different molluscs species. Int. J. Mol. Sci. 2011;12:8086–8095. doi: 10.3390/ijms12118086. PubMed DOI PMC
Dash S.K., Sharma M., Khare S., Kumar A. Omp85genosensor for detection of human brain bacterial meningitis. Biotechnol. Lett. 2013;35:929–935. doi: 10.1007/s10529-013-1161-2. PubMed DOI
Nagraik R., Kaushal A., Gupta S., Sethi S., Sharma A., Kumar D. Nanofabricated versatile electrochemical sensor for Leptospira interrogans detection. J. Biosci. Bioeng. 2020;129:441–446. doi: 10.1016/j.jbiosc.2019.11.003. PubMed DOI
Jampasa S., Lae-ngee P., Patarakul K., Ngamrojanavanich N., Chailapakul O., Rodthongkum N. Electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for leptospirosis diagnosis. Biosens. Bioelectron. 2019;142:111539. doi: 10.1016/j.bios.2019.111539. PubMed DOI
Electrochemical immunosensor for the detection of colistin in chicken liver