Using the multi-omics approach to reveal the silk composition in Plectrocnemia conspersa
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36060257
PubMed Central
PMC9432349
DOI
10.3389/fmolb.2022.945239
PII: 945239
Knihovny.cz E-zdroje
- Klíčová slova
- Trichoptera, adhesion, biomaterials, caddisfly, fibers, fibroin, mucin, zonadhesin,
- Publikační typ
- časopisecké články MeSH
Similar to Lepidoptera, the larvae of Trichoptera are also capable of producing silk. Plectrocnemia conspersa, a predatory species belonging to the suborder Annulipalpia, builds massive silken retreats with preycapturing nets. In this study, we describe the silk glands of P. conspersa and use the multi-omics methods to obtain a complete picture of the fiber composition. A combination of silk gland-specific transcriptome and proteomic analyses of the spun-out fibers yielded 27 significant candidates whose full-length sequences and gene structures were retrieved from the publicly available genome database. About one-third of the candidates were completely novel proteins for which there are no described homologs, including a group of five pseudofibroins, proteins with a composition similar to fibroin heavy chain. The rest were homologs of lepidopteran silk proteins, although some had a larger number of paralogs. On the other hand, P. conspersa fibers lacked some proteins that are regular components in moth silk. In summary, the multi-omics approach provides an opportunity to compare the overall composition of silk with other insect species. A sufficient number of such studies will make it possible to distinguish between the basic components of all silks and the proteins that represent the adaptation of the fibers for specific purposes or environments.
Biology Centre of the Czech Academy of Sciences Institute of Entomology Ceske Budejovice Czechia
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague Czechia
Faculty of Science University of South Bohemia Ceske Budejovice Czechia
Institute of Molecular Genetics Academy of Sciences of the Czech Republic Praha Czechia
Zobrazit více v PubMed
Afgan E., Baker D., Batut B., van den Beek M., Bouvier D., Ech M., et al. (2018). The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544. 10.1093/nar/gky379 PubMed DOI PMC
Almagro Armenteros J. J., Tsirigos K. D., Sønderby C. K., Petersen T. N., Winther O., Brunak S., et al. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423. 10.1038/s41587-019-0036-z PubMed DOI
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI
Ashton N. N., Roe D. R., Weiss R. B., Cheatham T. E., Stewart R. J. (2013). Self-tensioning aquatic caddisfly silk: Ca2+-dependent structure, strength, and load cycle hysteresis. Biomacromolecules 14, 3668–3681. 10.1021/bm401036z PubMed DOI
Bai X., Sakaguchi M., Yamaguchi Y., Ishihara S., Tsukada M., Hirabayashi K., et al. (2015). Molecular cloning, gene expression analysis, and recombinant protein expression of novel silk proteins from larvae of a retreat-maker caddisfly, Stenopsyche marmorata. Biochem. Biophys. Res. Commun. 464, 814–819. 10.1016/j.bbrc.2015.07.041 PubMed DOI
Berger C. A., Brewer M. S., Kono N., Nakamura H., Arakawa K., Kennedy S. R., et al. (2021). Shifts in morphology, gene expression, and selection underlie web loss in Hawaiian Tetragnatha spiders. BMC Ecol. Evol. 21, 48. 10.1186/s12862-021-01779-9 PubMed DOI PMC
Engster M. S. (1976). Studies on silk secretion in the Trichoptera (F. Limmephilidae). II. Structure and amino acid composition of the silk. Cell Tissue Res. 169, 77–92. 10.1007/BF00219309 PubMed DOI
Eum J. H., Yoe S. M., Seo Y. R., Kang S. W., Han S. S. (2005). Characterization of a novel repetitive secretory protein specifically expressed in the modified salivary gland of Hydropsyche sp. (Trichoptera; Hydropsychidae). Insect biochem. Mol. Biol. 35, 435–441. 10.1016/j.ibmb.2005.01.009 PubMed DOI
Farkaš R., Ďatková Z., Mentelová L., Löw P., Beňová-Liszeková D., Beňo M., et al. (2014). Apocrine secretion in Drosophila salivary glands: subcellular origin, dynamics, and identification of secretory proteins. PLoS One 9 (4), e94383. 10.1371/journal.pone.0094383 PubMed DOI PMC
Fedic R., Zurovec M., Sehnal F. (2003). Correlation between fibroin amino acid sequence and physical silk properties. J. Biol. Chem. 278, 35255–35264. 10.1074/jbc.M305304200 PubMed DOI
Frandsen P. B., Bursell M. G., Taylor A. M., Wilson S. B., Steeneck A., Stewart R. J. (2019). Exploring the underwater silken architectures of caddisworms: Comparative silkomics across two caddisfly suborders. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190206. 10.1098/rstb.2019.0206 PubMed DOI PMC
Hall T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis Program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.
Hayashi C. Y., Shipley N. H., Lewis R. V. (1999). Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 24, 271–275. 10.1016/S0141-8130(98)00089-0 PubMed DOI
Heckenhauer J., Frandsen P. B., Gupta D. K., Paule J., Prost S., Schell T., et al. (2019). Annotated draft genomes of two caddisfly species plectrocnemia conspersa CURTIS and Hydropsyche tenuis NAVAS (Insecta: Trichoptera). Genome Biol. Evol. 11, 3445–3451. 10.1093/gbe/evz264 PubMed DOI PMC
Hoang D. T., Chernomor O., von Haeseler A., Minh B. Q., Vinh L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35 (2), 518–522. 10.1093/molbev/msx281 PubMed DOI PMC
Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., von Haeseler A., Jermiin L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14 (6), 587–589. 10.1038/nmeth.4285 PubMed DOI PMC
Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858. 10.1038/nprot.2015.053 PubMed DOI PMC
Kludkiewicz B., Kucerova L., Konikova T., Strnad H., Hradilova M., Zaloudikova A., et al. (2019). The expansion of genes encoding soluble silk components in the greater wax moth, Galleria mellonella. Insect biochem. Mol. Biol. 106, 28–38. 10.1016/j.ibmb.2018.11.003 PubMed DOI
Kumar S., Stecher G., Tamura K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (7), 1870–1874. 10.1093/molbev/msw054 PubMed DOI PMC
Lee H., Scherer N. F., Messersmith P. B. (2006). Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. U. S. A. 103, 12999–13003. 10.1073/pnas.0605552103 PubMed DOI PMC
Levine J. D., Sauman I., Imbalzano M., Reppert S. M., Jackson F. R. (1995). Period protein from the giant silkmoth antheraea pernyi functions as a circadian clock element in Drosophila melanogaster . Neuron 15, 147–157. 10.1016/0896-6273(95)90072-1 PubMed DOI
Li Y., Zhao P., Liu H., Guo X., He H., Zhu R., et al. (2015). TIL-type protease inhibitors may be used as targeted resistance factors to enhance silkworm defenses against invasive fungi. Insect biochem. Mol. Biol. 57, 11–19. 10.1016/j.ibmb.2014.11.006 PubMed DOI
Luo S., Tang M., Frandsen P. B., Stewart R. J., Zhou X. (2018). The genome of an underwater architect, the caddisfly Stenopsyche tienmushanensis hwang (Insecta: Trichoptera). Gigascience 7. 10.1093/gigascience/giy143 PubMed DOI PMC
Miyake S., Azuma M. (2008). Acidification of the silk gland lumen in Bombyx mori and Samia cynthia ricini and localization of H+-translocating vacuolar-type ATPase. J. Insect Biotechnol. Sericol. 77, 9–16. 10.11416/jibs.77.1_9 DOI
Nguyen L.-T., Schmidt H. A., von Haeseler A., Minh B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32 (1), 268–274. 10.1093/molbev/msu300 PubMed DOI PMC
R Core Team (2017). R: A language and environment for statistical computing. Available at: https://www.R-project.org/.
R Studio Team (2015). RStudio: Integrated development environment for R. Available at: http://www.rstudio.com/.
Rindos M., Kucerova L., Rouhova L., Sehadova H., Sery M., Hradilova M., et al. (2021). Comparison of silks from pseudoips prasinana and bombyx mori shows molecular convergence in fibroin heavy chains but large differences in other silk components. Int. J. Mol. Sci. 22, 8246. 10.3390/ijms22158246 PubMed DOI PMC
Rouhova L., Kludkiewicz B., Sehadova H., Sery M., Kucerova L., Konik P., et al. (2021). Silk of the common clothes moth, Tineola bisselliella, a cosmopolitan pest belonging to the basal ditrysian moth line. Insect biochem. Mol. Biol. 130, 103527. 10.1016/j.ibmb.2021.103527 PubMed DOI
Sezutsu H., Yukuhiro K. (2000). Dynamic rearrangement within the Antheraea pernyi silk fibroin gene is associated with four types of repetitive units. J. Mol. Evol. 51, 329–338. 10.1007/s002390010095 PubMed DOI
Sezutsu H., Yukuhiro K. (2014). The complete nucleotide sequence of the Eri-silkworm (Samia cynthia ricini) fibroin gene. J. Insect Biotechnol. Sericology 83, 59–70.
Thomas J. A., Frandsen P. B., Prendini E., Zhou X., Holzenthal R. W. (2020). A multigene phylogeny and timeline for Trichoptera (Insecta). Syst. Entomol. 45, 670–686. 10.1111/syen.12422 DOI
Thorvaldsdottir H., Robinson J. T., Mesirov J. P. (2013). Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192. 10.1093/bib/bbs017 PubMed DOI PMC
Tyanova S., Temu T., Cox J. (2016). The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319. 10.1038/nprot.2016.136 PubMed DOI
Volenikova A., Nguyen P., Davey P., Sehadova H., Kludkiewicz B., Koutecky P., et al. (2022). Genome sequence and silkomics of the spindle ermine moth, Yponomeuta cagnagella, representing the early-diverging lineage of the ditrysian Lepidoptera. Commun. Biol. 2022. PubMed PMC
Wang C. S., Ashton N. N., Weiss R. B., Stewart R. J. (2014). Peroxinectin catalyzed dityrosine crosslinking in the adhesive underwater silk of a casemaker caddisfly larvae, Hysperophylax occidentalis. Insect biochem. Mol. Biol. 54, 69–79. 10.1016/j.ibmb.2014.08.009 PubMed DOI
Wang Y., Sanai K., Wen H., Zhao T., Nakagaki M. (2010). Characterization of unique heavy chain fibroin filaments spun underwater by the caddisfly Stenopsyche marmorata (Trichoptera; Stenopsychidae). Mol. Biol. Rep. 37, 2885–2892. 10.1007/s11033-009-9847-1 PubMed DOI
Wilson J. J. (2012). DNA barcodes for insects. Methods Mol. Biol. 858, 17–46. 10.1007/978-1-61779-591-6_3 PubMed DOI
Yonemura N., Mita K., Tamura T., Sehnal F. (2009). Conservation of silk genes in Trichoptera and Lepidoptera. J. Mol. Evol. 68, 641–653. 10.1007/s00239-009-9234-5 PubMed DOI PMC
Yonemura N., Sehnal F., Mita K., Tamura T. (2006). Protein composition of silk filaments spun under water by caddisfly larvae. Biomacromolecules 7, 3370–3378. 10.1021/bm060663u PubMed DOI
Zhang Y., Zhao P., Dong Z., Wang D., Guo P., Guo X., et al. (2015). Comparative proteome analysis of multi-layer cocoon of the silkworm, Bombyx mori . PLoS ONE 10, e0123403. 10.1371/journal.pone.0123403 PubMed DOI PMC
Zhao H., Sagert J., Hwang D. S., Waite J. H. (2009). Glycosylated hydroxytryptophan in a mussel adhesive protein from Perna viridis. J. Biol. Chem. 284, 23344–23352. 10.1074/jbc.M109.022517 PubMed DOI PMC
Zhou C.-Z., ConFalonieriF., MediNaN., Zivanovic Y., Esnault C., Yang T., et al. (2000). Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res. 28, 2413–2419. 10.1093/nar/28.12.2413 PubMed DOI PMC
Zurovec M., Yonemura N., Kludkiewicz B., Sehnal F., Kodrik D., Vieira L. C., et al. (2016). Sericin composition in the silk of Antheraea yamamai. Biomacromolecules 17, 1776–1787. 10.1021/acs.biomac.6b00189 PubMed DOI
Z̆urovec M., Sehnal F. (2002). Unique molecular architecture of silk fibroin in the waxmoth, Galleria mellonella. J. Biol. Chem. 277, 22639–22647. 10.1074/jbc.M201622200 PubMed DOI