Using the multi-omics approach to reveal the silk composition in Plectrocnemia conspersa

. 2022 ; 9 () : 945239. [epub] 20220811

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36060257

Similar to Lepidoptera, the larvae of Trichoptera are also capable of producing silk. Plectrocnemia conspersa, a predatory species belonging to the suborder Annulipalpia, builds massive silken retreats with preycapturing nets. In this study, we describe the silk glands of P. conspersa and use the multi-omics methods to obtain a complete picture of the fiber composition. A combination of silk gland-specific transcriptome and proteomic analyses of the spun-out fibers yielded 27 significant candidates whose full-length sequences and gene structures were retrieved from the publicly available genome database. About one-third of the candidates were completely novel proteins for which there are no described homologs, including a group of five pseudofibroins, proteins with a composition similar to fibroin heavy chain. The rest were homologs of lepidopteran silk proteins, although some had a larger number of paralogs. On the other hand, P. conspersa fibers lacked some proteins that are regular components in moth silk. In summary, the multi-omics approach provides an opportunity to compare the overall composition of silk with other insect species. A sufficient number of such studies will make it possible to distinguish between the basic components of all silks and the proteins that represent the adaptation of the fibers for specific purposes or environments.

Zobrazit více v PubMed

Afgan E., Baker D., Batut B., van den Beek M., Bouvier D., Ech M., et al. (2018). The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544. 10.1093/nar/gky379 PubMed DOI PMC

Almagro Armenteros J. J., Tsirigos K. D., Sønderby C. K., Petersen T. N., Winther O., Brunak S., et al. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37, 420–423. 10.1038/s41587-019-0036-z PubMed DOI

Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI

Ashton N. N., Roe D. R., Weiss R. B., Cheatham T. E., Stewart R. J. (2013). Self-tensioning aquatic caddisfly silk: Ca2+-dependent structure, strength, and load cycle hysteresis. Biomacromolecules 14, 3668–3681. 10.1021/bm401036z PubMed DOI

Bai X., Sakaguchi M., Yamaguchi Y., Ishihara S., Tsukada M., Hirabayashi K., et al. (2015). Molecular cloning, gene expression analysis, and recombinant protein expression of novel silk proteins from larvae of a retreat-maker caddisfly, Stenopsyche marmorata. Biochem. Biophys. Res. Commun. 464, 814–819. 10.1016/j.bbrc.2015.07.041 PubMed DOI

Berger C. A., Brewer M. S., Kono N., Nakamura H., Arakawa K., Kennedy S. R., et al. (2021). Shifts in morphology, gene expression, and selection underlie web loss in Hawaiian Tetragnatha spiders. BMC Ecol. Evol. 21, 48. 10.1186/s12862-021-01779-9 PubMed DOI PMC

Engster M. S. (1976). Studies on silk secretion in the Trichoptera (F. Limmephilidae). II. Structure and amino acid composition of the silk. Cell Tissue Res. 169, 77–92. 10.1007/BF00219309 PubMed DOI

Eum J. H., Yoe S. M., Seo Y. R., Kang S. W., Han S. S. (2005). Characterization of a novel repetitive secretory protein specifically expressed in the modified salivary gland of Hydropsyche sp. (Trichoptera; Hydropsychidae). Insect biochem. Mol. Biol. 35, 435–441. 10.1016/j.ibmb.2005.01.009 PubMed DOI

Farkaš R., Ďatková Z., Mentelová L., Löw P., Beňová-Liszeková D., Beňo M., et al. (2014). Apocrine secretion in Drosophila salivary glands: subcellular origin, dynamics, and identification of secretory proteins. PLoS One 9 (4), e94383. 10.1371/journal.pone.0094383 PubMed DOI PMC

Fedic R., Zurovec M., Sehnal F. (2003). Correlation between fibroin amino acid sequence and physical silk properties. J. Biol. Chem. 278, 35255–35264. 10.1074/jbc.M305304200 PubMed DOI

Frandsen P. B., Bursell M. G., Taylor A. M., Wilson S. B., Steeneck A., Stewart R. J. (2019). Exploring the underwater silken architectures of caddisworms: Comparative silkomics across two caddisfly suborders. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190206. 10.1098/rstb.2019.0206 PubMed DOI PMC

Hall T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis Program for windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

Hayashi C. Y., Shipley N. H., Lewis R. V. (1999). Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 24, 271–275. 10.1016/S0141-8130(98)00089-0 PubMed DOI

Heckenhauer J., Frandsen P. B., Gupta D. K., Paule J., Prost S., Schell T., et al. (2019). Annotated draft genomes of two caddisfly species plectrocnemia conspersa CURTIS and Hydropsyche tenuis NAVAS (Insecta: Trichoptera). Genome Biol. Evol. 11, 3445–3451. 10.1093/gbe/evz264 PubMed DOI PMC

Hoang D. T., Chernomor O., von Haeseler A., Minh B. Q., Vinh L. S. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35 (2), 518–522. 10.1093/molbev/msx281 PubMed DOI PMC

Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., von Haeseler A., Jermiin L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14 (6), 587–589. 10.1038/nmeth.4285 PubMed DOI PMC

Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858. 10.1038/nprot.2015.053 PubMed DOI PMC

Kludkiewicz B., Kucerova L., Konikova T., Strnad H., Hradilova M., Zaloudikova A., et al. (2019). The expansion of genes encoding soluble silk components in the greater wax moth, Galleria mellonella. Insect biochem. Mol. Biol. 106, 28–38. 10.1016/j.ibmb.2018.11.003 PubMed DOI

Kumar S., Stecher G., Tamura K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33 (7), 1870–1874. 10.1093/molbev/msw054 PubMed DOI PMC

Lee H., Scherer N. F., Messersmith P. B. (2006). Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. U. S. A. 103, 12999–13003. 10.1073/pnas.0605552103 PubMed DOI PMC

Levine J. D., Sauman I., Imbalzano M., Reppert S. M., Jackson F. R. (1995). Period protein from the giant silkmoth antheraea pernyi functions as a circadian clock element in Drosophila melanogaster . Neuron 15, 147–157. 10.1016/0896-6273(95)90072-1 PubMed DOI

Li Y., Zhao P., Liu H., Guo X., He H., Zhu R., et al. (2015). TIL-type protease inhibitors may be used as targeted resistance factors to enhance silkworm defenses against invasive fungi. Insect biochem. Mol. Biol. 57, 11–19. 10.1016/j.ibmb.2014.11.006 PubMed DOI

Luo S., Tang M., Frandsen P. B., Stewart R. J., Zhou X. (2018). The genome of an underwater architect, the caddisfly Stenopsyche tienmushanensis hwang (Insecta: Trichoptera). Gigascience 7. 10.1093/gigascience/giy143 PubMed DOI PMC

Miyake S., Azuma M. (2008). Acidification of the silk gland lumen in Bombyx mori and Samia cynthia ricini and localization of H+-translocating vacuolar-type ATPase. J. Insect Biotechnol. Sericol. 77, 9–16. 10.11416/jibs.77.1_9 DOI

Nguyen L.-T., Schmidt H. A., von Haeseler A., Minh B. Q. (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32 (1), 268–274. 10.1093/molbev/msu300 PubMed DOI PMC

R Core Team (2017). R: A language and environment for statistical computing. Available at: https://www.R-project.org/.

R Studio Team (2015). RStudio: Integrated development environment for R. Available at: http://www.rstudio.com/.

Rindos M., Kucerova L., Rouhova L., Sehadova H., Sery M., Hradilova M., et al. (2021). Comparison of silks from pseudoips prasinana and bombyx mori shows molecular convergence in fibroin heavy chains but large differences in other silk components. Int. J. Mol. Sci. 22, 8246. 10.3390/ijms22158246 PubMed DOI PMC

Rouhova L., Kludkiewicz B., Sehadova H., Sery M., Kucerova L., Konik P., et al. (2021). Silk of the common clothes moth, Tineola bisselliella, a cosmopolitan pest belonging to the basal ditrysian moth line. Insect biochem. Mol. Biol. 130, 103527. 10.1016/j.ibmb.2021.103527 PubMed DOI

Sezutsu H., Yukuhiro K. (2000). Dynamic rearrangement within the Antheraea pernyi silk fibroin gene is associated with four types of repetitive units. J. Mol. Evol. 51, 329–338. 10.1007/s002390010095 PubMed DOI

Sezutsu H., Yukuhiro K. (2014). The complete nucleotide sequence of the Eri-silkworm (Samia cynthia ricini) fibroin gene. J. Insect Biotechnol. Sericology 83, 59–70.

Thomas J. A., Frandsen P. B., Prendini E., Zhou X., Holzenthal R. W. (2020). A multigene phylogeny and timeline for Trichoptera (Insecta). Syst. Entomol. 45, 670–686. 10.1111/syen.12422 DOI

Thorvaldsdottir H., Robinson J. T., Mesirov J. P. (2013). Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192. 10.1093/bib/bbs017 PubMed DOI PMC

Tyanova S., Temu T., Cox J. (2016). The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319. 10.1038/nprot.2016.136 PubMed DOI

Volenikova A., Nguyen P., Davey P., Sehadova H., Kludkiewicz B., Koutecky P., et al. (2022). Genome sequence and silkomics of the spindle ermine moth, Yponomeuta cagnagella, representing the early-diverging lineage of the ditrysian Lepidoptera. Commun. Biol. 2022. PubMed PMC

Wang C. S., Ashton N. N., Weiss R. B., Stewart R. J. (2014). Peroxinectin catalyzed dityrosine crosslinking in the adhesive underwater silk of a casemaker caddisfly larvae, Hysperophylax occidentalis. Insect biochem. Mol. Biol. 54, 69–79. 10.1016/j.ibmb.2014.08.009 PubMed DOI

Wang Y., Sanai K., Wen H., Zhao T., Nakagaki M. (2010). Characterization of unique heavy chain fibroin filaments spun underwater by the caddisfly Stenopsyche marmorata (Trichoptera; Stenopsychidae). Mol. Biol. Rep. 37, 2885–2892. 10.1007/s11033-009-9847-1 PubMed DOI

Wilson J. J. (2012). DNA barcodes for insects. Methods Mol. Biol. 858, 17–46. 10.1007/978-1-61779-591-6_3 PubMed DOI

Yonemura N., Mita K., Tamura T., Sehnal F. (2009). Conservation of silk genes in Trichoptera and Lepidoptera. J. Mol. Evol. 68, 641–653. 10.1007/s00239-009-9234-5 PubMed DOI PMC

Yonemura N., Sehnal F., Mita K., Tamura T. (2006). Protein composition of silk filaments spun under water by caddisfly larvae. Biomacromolecules 7, 3370–3378. 10.1021/bm060663u PubMed DOI

Zhang Y., Zhao P., Dong Z., Wang D., Guo P., Guo X., et al. (2015). Comparative proteome analysis of multi-layer cocoon of the silkworm, Bombyx mori . PLoS ONE 10, e0123403. 10.1371/journal.pone.0123403 PubMed DOI PMC

Zhao H., Sagert J., Hwang D. S., Waite J. H. (2009). Glycosylated hydroxytryptophan in a mussel adhesive protein from Perna viridis. J. Biol. Chem. 284, 23344–23352. 10.1074/jbc.M109.022517 PubMed DOI PMC

Zhou C.-Z., ConFalonieriF., MediNaN., Zivanovic Y., Esnault C., Yang T., et al. (2000). Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res. 28, 2413–2419. 10.1093/nar/28.12.2413 PubMed DOI PMC

Zurovec M., Yonemura N., Kludkiewicz B., Sehnal F., Kodrik D., Vieira L. C., et al. (2016). Sericin composition in the silk of Antheraea yamamai. Biomacromolecules 17, 1776–1787. 10.1021/acs.biomac.6b00189 PubMed DOI

Z̆urovec M., Sehnal F. (2002). Unique molecular architecture of silk fibroin in the waxmoth, Galleria mellonella. J. Biol. Chem. 277, 22639–22647. 10.1074/jbc.M201622200 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...