Apocrine secretion in Drosophila salivary glands: subcellular origin, dynamics, and identification of secretory proteins
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24732043
PubMed Central
PMC3986406
DOI
10.1371/journal.pone.0094383
PII: PONE-D-13-51389
Knihovny.cz E-zdroje
- MeSH
- apokrinní žlázy metabolismus ultrastruktura MeSH
- DNA metabolismus MeSH
- Drosophila melanogaster metabolismus MeSH
- fluorescenční barviva metabolismus MeSH
- genetická transkripce MeSH
- kukla metabolismus MeSH
- larva růst a vývoj metabolismus MeSH
- proteiny Drosophily metabolismus MeSH
- proteosyntéza MeSH
- rekombinantní fúzní proteiny metabolismus MeSH
- slinné proteiny a peptidy metabolismus MeSH
- slinné žlázy metabolismus ultrastruktura MeSH
- subcelulární frakce metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- fluorescenční barviva MeSH
- proteiny Drosophily MeSH
- rekombinantní fúzní proteiny MeSH
- slinné proteiny a peptidy MeSH
In contrast to the well defined mechanism of merocrine exocytosis, the mechanism of apocrine secretion, which was first described over 180 years ago, remains relatively uncharacterized. We identified apocrine secretory activity in the late prepupal salivary glands of Drosophila melanogaster just prior to the execution of programmed cell death (PCD). The excellent genetic tools available in Drosophila provide an opportunity to dissect for the first time the molecular and mechanistic aspects of this process. A prerequisite for such an analysis is to have pivotal immunohistochemical, ultrastructural, biochemical and proteomic data that fully characterize the process. Here we present data showing that the Drosophila salivary glands release all kinds of cellular proteins by an apocrine mechanism including cytoskeletal, cytosolic, mitochondrial, nuclear and nucleolar components. Surprisingly, the apocrine release of these proteins displays a temporal pattern with the sequential release of some proteins (e.g. transcription factor BR-C, tumor suppressor p127, cytoskeletal β-tubulin, non-muscle myosin) earlier than others (e.g. filamentous actin, nuclear lamin, mitochondrial pyruvate dehydrogenase). Although the apocrine release of proteins takes place just prior to the execution of an apoptotic program, the nuclear DNA is never released. Western blotting indicates that the secreted proteins remain undegraded in the lumen. Following apocrine secretion, the salivary gland cells remain quite vital, as they retain highly active transcriptional and protein synthetic activity.
Zobrazit více v PubMed
Jahn R (2004) Principles of exocytosis and membrane fusion. Ann N Y Acad Sci 1014: 170–178. PubMed
Rutter GA, Tsuboi T (2004) Kiss and run exocytosis of dense core secretory vesicles. Neuroreport 15: 79–81. PubMed
Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27: 509–547. PubMed
Chieregatti E, Meldolesi J (2005) Regulated exocytosis: new organelles for non-secretory purposes. Nat Rev Mol Cell Biol 6: 181–187. PubMed
Barclay JW, Morgan A, Burgoyne RD (2005) Calcium-dependent regulation of exocytosis. Cell Calcium 38: 343–353. PubMed
Snyder DA, Kelly ML, Woodbury DJ (2006) SNARE complex regulation by phosphorylation.Cell Biochem Biophys. 45: 111–123. PubMed
Westerink RH (2006) Targeting exocytosis: ins and outs of the modulation of quantal dopamine release. CNS Neurol Disord Drug Targets 5: 57–77. PubMed
Leitzell K (2007) Synaptotagmin: is 2 better than 1? J Neurosci 27: 4231–4232. PubMed PMC
Deak F, Xu Y, Chang WP, Dulubova I, Khvotchev M, et al. (2008) Munc18-1 binding to the neuronal SNARE complex controls synaptic vesicle priming. J Cell Biol 184: 751–764. PubMed PMC
Beck R, Ravet M, Wieland FT, Cassel D (2009) The COPI system: Molecular mechanisms and function. FEBS Lett 583: 2701–2709. PubMed
Südhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323: 474–477. PubMed PMC
Anantharam A, Onoa B, Edwards RH, Holz RW, Axelrod D (2010) Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM. J Cell Biol 188: 415–428. PubMed PMC
He B, Guo W (2010) The exocyst complex in polarized exocytosis. Curr Opin Cell Biol 21: 537–542. PubMed PMC
Blank U (2011) The mechanisms of exocytosis in mast cells. Adv Exp Med Biol 716: 107–122. PubMed
Keren K (2011) Cell motility: the integrating role of the plasma membrane. Eur Biophys J 40: 1013–1027. PubMed PMC
Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490: 201–207. PubMed PMC
Porat-Shliom N, Milberg O, Masedunskas A, Weigert R (2013) Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci 70: 2099–2121. PubMed PMC
Malsam J, Kreye S, Söllner TH (2008) Membrane fusion: SNAREs and regulation. Cell Mol Life Sci 65: 2814–2832. PubMed PMC
Rizo J, Rosenmund C (2008) Synaptic vesicle fusion. Nat Struct Mol Biol 15: 665–674. PubMed PMC
Saraste J, Dale HA, Bazzocco S, Marie M (2009) Emerging new roles of the pre-Golgi intermediate compartment in biosynthetic-secretory trafficking. FEBS Lett 583: 3804–3810. PubMed
Walter AM, Wiederhold K, Bruns D, Fasshauer D, Sørensen JB (2010) Synaptobrevin N-terminally bound to syntaxin-SNAP-25 defines the primed vesicle state in regulated exocytosis. J Cell Biol 188: 401–413. PubMed PMC
Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ (2007) Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128: 183–195. PubMed
Maximov A, Tang J, Yang X, Pang ZP, Südhof TC (2009) Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323: 516–521. PubMed PMC
Kasai H, Takahashi N, Tokumaru H (2012) Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiol Rev 92: 1915–1964. PubMed
Satoh Y, Gesase AP, Habara Y, Ono K, Kanno T (1996) Lipid secretory mechanisms in the mammalian harderian gland. Microsc Res Tech 34: 104–110. PubMed
Gesase AP, Satoh Y (2003) Apocrine secretory mechanism: recent findings and unresolved problems. Histol Histopathol 18: 597–608. PubMed
Vegliante F, Hasenfuss I (2012) Morphology and diversity of exocrine glands in lepidopteran larvae. Annu Rev Entomol 57: 187–204. PubMed
Griffith JR (2005) Isolated areolar apocrine chromhidrosis. Pediatrics 115: e239–241. PubMed
Khalbuss WE (2005) Cytomorphology of rare malignant tumors of the breast. Clin Lab Med 25: 761–775. PubMed
Shah N (2005) Hidradenitis suppurativa: a treatment challenge. Am Fam Physician 72: 1547–1552. PubMed
Crowson AN, Magro CM, Mihm MC (2006) Malignant adnexal neoplasms. Mod Pathol 2: S93–S126. PubMed
Krbec AC (2007) Current understanding and management of hidradenitis suppurativa. J Am Acad Nurse Pract 19: 228–234. PubMed
O‘Malley FP, Bane A (2008) An update on apocrine lesions of the breast. Histopathology 52: 3–10. PubMed
Chi AC, Mapes IL, Javed T, Neville BW (2010) Epidermal choristoma of the oral cavity: report of 2 cases of an extremely rare entity. J Oral Maxillofac 68: 451–455. PubMed
Elayat G, Selim AG, Wells CA (2010) Cell turnover in apocrine metaplasia and apocrine adenosis of the breast. Ann Diagn Pathol 14: 1–7. PubMed
Gjorevski N, Nelson CM (2011) Integrated morphodynamic signalling of the mammary gland. Nat Rev Mol Cell Biol 12: 581–593. PubMed
Tincani A, Andreoli L, Cavazzana I, Doria A, Favero M, et al. (2013) Novel aspects of Sjögren's syndrome in 2012. BMC Med 11: 93 doi: 10.1186/1741-7015-11-93 PubMed DOI PMC
Purkinje J (1833) Review of Burdach's Die Physiologie der Erfahrungswissenschaft. Jahrb Wissen Kritik 1: 789–796.
Velpeau A (1839) Aiselle. In: Dictionnaire de Médecine, un Répertoire Général des Sciences Médicales sous la Rapport Théorique et Practique, vol. 2. Paris: Bechet Jeune. pp. 86–109.
Verneuil A (1854) Études sur les tumeurs de la peau; des quelques maladies des glandes sudoripares. Arch Gén Méd 4: 447–468.
Constantinou C, Widom K, Desantis J, Obmann M (2008) Hidradenitis suppurativa complicated by squamous cell carcinoma. Am Surg 74: 1177–1181. PubMed
Lasko LA, Post C, Kathju S (2008) Hidradenitis suppurativa: a disease of apocrine gland physiology. JAAPA 21: 3–25. PubMed
Sellheyer K, Krahl D (2008) What causes acne inversa (or hidradenitis suppurativa)? - the debate continues. J Cutan Pathol 35: 701–703. PubMed
Grant A, Gonzalez T, Montgomery MO, Cardenas V, Kerdel FA (2010) Infliximab therapy for patients with moderate to severe hidradenitis suppurativa: a randomized, double-blind, placebo-controlled crossover trial. J Am Acad Dermatol 62: 205–217. PubMed
Mozeika E, Jemec GB, Nürnberg BM (2011) Hedgehog pathway does not play a role in hidradenitis suppurativa pathogenesis. Exp Dermatol 20: 841–842. PubMed
Blok JL, van Hattem S, Jonkman MF, Horváth B (2013) Systemic therapy with immunosuppressive agents and retinoids in hidradenitis suppurativa: a systematic review. Br J Dermatol 168: 243–252. PubMed
Farkaš R, Mechler BM (2000) The timing of Drosophila salivary gland apoptosis displays an l(2)gl-dose response. Cell Death Differ 7: 89–101. PubMed
Ashburner M, Thompson JN (1978) The laboratory culture of Drosophila In: Ashburner M, Wright TRF, editors. The Genetics and Biology of Drosophila, vol. 2a. London and New York: Academic Press, pp. 1–109.
Ransom R (1982) Techniques. In: Ransom R. editor. A Handbook of Drosophila Development. Amsterdam and New York: Elsevier Biomedical Press. pp. 1–30.
Lindsley DL, Zimm GG (1992) The Genome of Drosophila melanogaster. San Diego, New York and Lodon:Academic Press. 1133p.
Farkaš R (1991) Simple method for high efficiency pulse labelling of proteins and nucleic acids in larval salivary glands of Drosophila . Dros Inf Serv 70: 244–246.
Farkaš R, Šuťáková G (1998) The ultrastructural changes of larval and prepupal salivary glands of Drosophila cultured in vitro with ecdysone. In Vitro Cell Devel Biol 34: 813–823. PubMed
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685. PubMed
Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244: 4406–4411. PubMed
Oakley BR, Kirsch DR, Morris NR (1980) A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem 105: 361–363. PubMed
Laskey RA, Mills AD (1975) Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem 56: 335–341. PubMed
Bellen HJ, O'Kane CJ, Wilson C, Grossniklaus U, Pearson RK, et al. (1989) P-element-mediated enhancer detection: a versatile method to study development in Drosophila . Genes Dev 3: 1288–1300. PubMed
Kobayashi S, Okada M (1993) A double staining technique using 5-bromo-4-chloro-3- indolyl-β-D-galactopyranoside (X-gal) and immunoperoxidase in whole Drosophila embryos. Biotech Histochem 68: 237–239. PubMed
Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback . Chromosoma 98: 81–85. PubMed
Clary DO, Wahleithner JA, Wolstenholme DR (1983) Transfer RNA genes in Drosophila mitochondrial DNA: related 5' flanking sequences and comparisons to mammalian mitochondrial tRNA genes. Nucleic Acids Res 11: 2411–2425. PubMed PMC
de Bruijn MH (1983) Drosophila melanogaster mitochondrial DNA, a novel organization and genetic code. Nature 304: 234–241. PubMed
Yun B, Farkaš R, Lee K, Rabinow L (1994) The Doa locus encodes a member of a newprotein kinase family and is essential for eye and embryonic development in Drosophilamelanogaster . Genes Dev 8: 1160–1173. PubMed
Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protoc 1: 2856–2860. PubMed
Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature Protocols 2: 1896–1906. PubMed
Řehulková H, Chalupová J, Šebela M, Řehulka P (2010) A convenient purification and preconcentration of peptides with α-cyano-4-hydroxycinnamic acid matrix crystals in a pipette tip for matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 45: 104–111. PubMed
Kushida H (1964) Improved methods for embedding with Durcupan. J Electron Micros 13: 139–144. PubMed
Kushida H (1966) Further improved method for embedding with Durcupan. J Electron Micros 15: 94–95. PubMed
Glauert AM (1975) Fixation, dehydration and embedding of biological specimens. In: Glauert AM editor. Practical Methods in Electron Microscopy, vol. 3. Amsterdam and New York: North-Holland American Elsevier. pp. 5–186.
Mráz P, Malatín D, Polónyi J (1982) Modifications of embedding tissues in durcupan ACM (Fluka) based on viscosity index measurements. Z Mikrosk Anat Forsch 96: 130–137. PubMed
Watson ML (1958) Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol 4: 475–478. PubMed PMC
Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17: 208–211. PubMed PMC
Sato T (1968) A modified method for lead staining of thin sections. J Electron Microsc 17: 158–159. PubMed
Mazza A, Tufano CA, Casale A, Felluga B (1981) A simple and reliable stain for routine microscope observation of ultrathin sections. J Submicrosc Cytol 13: 473–478. PubMed
Beňo M, Liszeková D, Farkaš R (2007) Processing of soft pupae and uneclosed pharate adults of Drosophila for scanning electron microscopy. Microsc Res Tech 70: 1022–1027. PubMed
Nation JL (1983) A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Stain Technol 58: 347–351. PubMed
Kennedy JR, Williams RW, Gray JP (1989) Use of Peldri II (a fluorocarbon solid at room temperature) as an alternative to critical point drying for biological tissues. J Electron Microsc Tech 11: 117–125. PubMed
Bray DF, Bagu J, Koegler P (1993) Comparison of hexamethyldisilazane (HMDS), Peldri II, and critical-point drying methods for scanning electron microscopy of biological specimens. Microsc Res Tech 26: 489–495. PubMed
Ashburner M (1970) Function and structure of polytene chromosomes during insect development. In: Beament JWL, Treherne JE, Wigglesworth VB, editors. Advances in Insect Physiology vol. 7. New York and London: Academic Press. pp. 1–95.
Ashburner M (1972) Puffing patterns in Drosophila melanogaster and related species. In: Beerman W, editor. Developmental Studies on Giant Chromosomes. Berlin, Heidelberg, New York: Springer-Verlag. pp. 101–151. PubMed
Richards GP (1976) The control of prepupal puffing patterns in vitro: implications for prepupal ecdysone titres in Drosophila melanogaster . Dev Biol 48: 191–195. PubMed
Richards GP (1976) Sequential gene activation by ecdysone in polytene chromosomes of Drosophila melanogaster. IV. The mid prepupal period. Dev Biol 54: 256–263. PubMed
Ashburner M, Berendes HD (1978) Puffing of polytene chromosomes. In: Ashburner M, Wright TRF, editors. The Genetics and Biology of Drosophila, vol 2b. London and New York: Academic Press. pp. 315–395.
Kurosumi K, Shibasaki S, Ito T (1984) Cytology of the secretion in mammalian sweat glands. Int Rev Cytol 87: 253–329. PubMed
Gesase AP, Satoh Y, Ono K (1995) G-protein activation enhances Ca2+-dependent lipid secretion of the rat Harderian gland. Anat Embryol 192: 319–328. PubMed
Gesase AP (2007) Apocrine secretory processes in the goblet cells of rat colon following stimulation with carbamylcholine. Ital J Anat Embryol 112: 117–129. PubMed
Schiefferdecker P (1922) Die Hautdrusen des Menschen und des Saugetieres, ihre Bedeutung sowie die Muscularis sexualis. Zoologica Stuttgart 72: 1–154.
Hurley HJ, Shelley WB (1954) The role of myoepithelium of the human apocrine sweat gland. J Invest Derm 22: 143–155. PubMed
Rothman S (1954) Physiology and Biochemistry of the Skin. Chicago: University of Chicago Press. 741p.
Kuno YA (1956) Human Perspiration. Illinois: Charles C Thomas Press. 416p.
Montagna W (1956) The Structure and Function of the Skin. New York: Academic Press. 454p.
Charles A (1959) An electron microscopic study of the human axillary apocrine gland.J Anat. 93: 226–232. PubMed PMC
Wilhelm B, Keppler C, Hoffbauer G, Lottspeich F, Linder D, et al. (1998) Cytoplasmic carbonic anhydrase II of rat coagulating gland is secreted via the apocrine export mode. J Histochem Cytochem 46: 505–511. PubMed
Stolle CA, McGowan MH, Heim RA, Varia M, Neubauer JA (1991) Nucleotide sequence of a cDNA encoding rat brain carbonic anhydrase II and its deduced amino acid sequence. Gene 109: 265–267. PubMed
Seitz J, Keppler C, Rausch U, Aumüller G (1990) Immunohistochemistry of secretory transglutaminase from rodent prostate. Histochemistry 93: 525–530. PubMed
Steinhoff M, Eicheler W, Holterhus PM, Rausch U, Seitz J, et al. (1994) Hormonally induced changes in apocrine secretion of transglutaminase in the rat dorsal prostate and coagulating gland. Eur J Cell Biol 65: 49–59. PubMed
Manin M, Lecher P, Martinez A, Tournadre S, Jean C (1995) Exportation of mouse vas deferens protein, a protein without a signal peptide, from mouse vas deferens epithelium: a model of apocrine secretion. Biol Reprod 52: 50–62. PubMed
Schaumburg-Lever G, Lever WF (1975) Secretion from human apocrine glands: an electron microscopic study. J Invest Dermatol 64: 38–41. PubMed
Main T, Lim D (1976) The human external auditory canal secretory system-an ultrastructural study. Laryngoscope 86: 1164–1176. PubMed
Stinson SF, Loosli CG (1978) Ultrastructural evidence concerning the mode of secretion of electron-dense granules by Clara cells. J Anat 127: 291–298. PubMed PMC
Smith JD, Hearn GW (1979) Ultrastructure of the apocrine sebaceous anal scent gland of the woodchuck, Marmota monax: evidence for apocrine and merocrine secretion by a single cell type. Anat Rec 193: 269–292. PubMed
Satoh Y, Ishikawa K, Oomori Y, Takeda S, Ono K (1992) Secretion mode of theHarderian gland of rats after stimulation by cholinergic secretagogues. Acta Anat 143: 7–13. PubMed
Lucheroni A, Maurizi M, Spreca A, Palmerini CA, Binazzi M (1986) Some aspects of the secretory activity of the human olfactory glands. Rhinology 24: 57–60. PubMed
Atoji Y, Yamamoto Y, Suzuki Y (1998) Apocrine sweat glands in the circumanal glands of the dog. Anat Rec 252: 403–412. PubMed
Aumüller G, Wilhelm B, Seitz J (1999) Apocrine secretion.fact or artifact? Anat Anz 181: 437–446. PubMed
Groos S, Wilhelm B, Renneberg H, Riva A, Reichelt R, et al. (1999) Simultaneous apocrine and merocrine secretion in the rat coagulation gland. Cell Tissue Res 295: 495–504. PubMed
Baccari GC, Chieffi G, Di Mattea L, Dafnis D, De Rienzo G, et al. (2000) Morphology of the Harderian gland of the Gecko (Tarentola mauritanica). J Morphol 244: 137–142. PubMed
Zaviačič M, Jakubovská V, Belošovič M, Breza J (2000) Ultrastructure of the normal adult human female prostate gland (Skene's glands). Anat Embryol 201: 51–61. PubMed
Payne AP (1994) The Harderian gland: a tercentenial review. J Anat 185: 1–49. PubMed PMC
Gesase AP, Satoh Y, Ono K (1996) Secretagogue-induced apocrine secretion in the rat Harderian gland of the rat. Cell Tissue Res 285: 501–507. PubMed
Fraenkel G, Brookes VJ (1953) The process by which the puparia of many species of flies become fixed to a substrate. Biol Bull Mar Lab Woods Hole 105: 442–449.
Lehmann M (1996) Drosophila Sgs genes: stage and tissue specificity of hormone responsiveness. BioEssays 18: 47–54. PubMed
Korge G (1975) Chromosome puff activity and protein synthesis in larval salivary glandsof Drosophila melanogaster . Proc Natl Acad Sci USA 72: 4550–4554. PubMed PMC
Korge G (1977) Larval saliva in Drosophila melanogaster: production, composition, and relationship to chromosome puffs. Dev Biol 58: 339–355. PubMed
Zhimulev IF, Kolesnikov NN (1975) Synthesis and secretion of mucoprotein glue in the salivary gland of Drosophila melanogaster . Wilhelm Roux's Archiv 178: 15–28. PubMed
Berendes HD, Ashburner M (1978) The salivary glands. In: Ashburner M, Wright TRF, editors. The Genetics and Biology of Drosophila, vol 2b. London and New York: Academic Press. pp. 453–498.
Lane NJ, Carter YR, Ashburner M (1972) Puffs and salivary gland function: the fine structure of the larval and prepupal salivary glands of Drosophila melanogaster . Wilhelm Roux's Arch 169: 216–238. PubMed
Boyd M, Ashburner M (1977) The hormonal control of salivary gland secretion in Drosophila melanogaster: studies in vitro . J Insect Physiol 23: 517–523.
Burtis KC, Thummel CS, Jones CW, Karim FD, Hogness DS (1990) The Drosophila 74EF early puff contains E74, a complex ecdysone-inducible gene that encodes two ets-related proteins. Cell 61: 85–99. PubMed
Segraves WA, Hogness DS (1990) The E75 ecdysone-inducible gene responsible for the 75B early puff in Drosophila encodes two new members of the steroid receptor superfamily. Genes Dev 4: 204–219. PubMed
Thummel CS (1996) Flies on steroids - Drosophila metamorphosis and the mechanisms of steroid hormone action. Trends Genet 12: 306–310. PubMed
Thummel CS (2002) Ecdysone-regulated puff genes 2000. Insect Biochem Mol Biol 32: 113–120. PubMed
von Gaudecker B (1972) Der Strukturwandel der larvalen Speicheldrüse von Drosophila melanogaster. Ein Beitrag zur Frage nach der steuernden Wirkung aktiver Gene auf das Cytoplasma. Z Zellforsch 127: 50–86. PubMed
Sarmiento LA, Mitchell HK (1982) Drosophila melanogaster salivary gland proteins and pupation. Dev Genet 3: 255–272.
Jiang C, Baehrecke EH, Thummel CS (1997) Steroid regulated programmed cell death during Drosophila metamorphosis. Development 124: 4673–4683. PubMed
Jiang C, Lamblin A-FJ, Steller H, Thummel CS (2000) A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Molec Cell 5: 445–455. PubMed
Baehrecke EH (2003) Autophagic programmed cell death in Drosophila . Cell Death Differ 10: 940–945. PubMed
Tissiéres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84: 389–398. PubMed
Zhimulev IF, Izquierdo ML, Lewis M, Ashburner M (1981) Patterns of protein synthesis in salivary glands of Drosophila melanogaster during larval and prepupal development. Roux's Arch Dev Biol 190: 351–357. PubMed
Ashburner M, Chihara C, Meltzer P, Richards G (1974) Temporal control of puffing activity in polytene chromosomes. Cold Spring Harbor Symp Quant Biol 38: 655–662. PubMed
Richards GP (1976) Sequential gene activation by ecdysone in polytene chromosomes of Drosophila melanogaster. V. The late prepupal puffs. Dev Biol 54: 264–275. PubMed
Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68: 1015–1068. PubMed
Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83: 301–310. PubMed
Orlowski M, Wilk S (2003) Ubiquitin-independent proteolytic functions of the proteasome. Arch Biochem Biophys 415: 1–5. PubMed
Fang S, Weissman AM (2004) A field guide to ubiquitylation. Cell Mol Life Sci 61: 1546–1561. PubMed PMC
Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, et al. (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453: 481–488. PubMed PMC
Su V, Lau AF (2009) Ubiquitin-like and ubiquitin-associated domain proteins: significance in proteasomal degradation. Cell Mol Life Sci 66: 2819–2833. PubMed PMC
Maybeck V, Röper K (2009) A targeted gain-of-function screen identifies genes affecting salivary gland morphogenesis/tubulogenesis in Drosophila . Genetics 181: 543–565. PubMed PMC
Chintapalli VR, Wang J, Dow JAT (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 39: 715–720. PubMed
Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, et al. (2011) The developmental transcriptome of Drosophila melanogaster . Nature 471: 473–479. PubMed PMC
Ng V, Cho P, To C-H (2000) Tear proteins of normal young Hong Kong Chinese. Graefe‘s Arch Clin Exp Ophthalmol 238: 738–745. PubMed
Grus FH, Podust VN, Bruns K, Lackner K, Fu S, et al. (2005) SELDI-TOF-MS ProteinChip array profiling of tears from patients with dry eye. Invest Ophthalmol Vis Sci 46: 863–876. PubMed
Zhou L, Beuerman RW, Chan CM, Zhao SZ, Li XR, et al. (2009) Identification of tear fluid biomarkers in dry eye syndrome using iTRAQ quantitative proteomics. J Proteome Res 8: 4889–4905. PubMed
Versura P, Nanni P, Bavelloni A, Blalock WL, Piazzi M, et al. (2010) Tear proteomics in evaporative dry eye disease. Eye 24: 1396–1402. PubMed
Wrobel A, Seltamnn H, Fimmel S, Müller-Decker K, Tsukada M, et al. (2003) Differentiation and apoptosis in human immortalized sebocytes. J Invest Dermatol 120: 175–181. PubMed
Horsley W, O'Carroll D, Tooze R, Ohinata Y, Saitou M, et al. (2006) Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126: 597–609. PubMed PMC
Schneider MR, Paus R (2010) Sebocytes, multifaceted epithelial cells: Lipid production and holocrine secretion. Intl J Bioch Cell Biol 42: 181–185. PubMed
Using the multi-omics approach to reveal the silk composition in Plectrocnemia conspersa
The Role of Filippi's Glands in the Silk Moths Cocoon Construction
SLIDE-Novel Approach to Apocrine Sweat Sampling for Lipid Profiling in Healthy Individuals
A new look at transudation: the apocrine connection