Gross morphology and adhesion-associated physical properties of Drosophila larval salivary gland glue secretion

. 2024 Apr 29 ; 14 (1) : 9779. [epub] 20240429

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38684688

Grantová podpora
VEGA 2/0103/17 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
CRG-972173 North Atlantic Treaty Organization
EEA-Norwegian FM SK-0086 EEA Grants/Norway Grants
COST ENBA-CA15216 European Commission
APVV-16-0219 Agentúra na Podporu Výskumu a Vývoja

Odkazy

PubMed 38684688
PubMed Central PMC11059401
DOI 10.1038/s41598-024-57292-8
PII: 10.1038/s41598-024-57292-8
Knihovny.cz E-zdroje

One of the major functions of the larval salivary glands (SGs) of many Drosophila species is to produce a massive secretion during puparium formation. This so-called proteinaceous glue is exocytosed into the centrally located lumen, and subsequently expectorated, serving as an adhesive to attach the puparial case to a solid substrate during metamorphosis. Although this was first described almost 70 years ago, a detailed description of the morphology and mechanical properties of the glue is largely missing. Its main known physical property is that it is released as a watery liquid that quickly hardens into a solid cement. Here, we provide a detailed morphological and topological analysis of the solidified glue. We demonstrated that it forms a distinctive enamel-like plaque that is composed of a central fingerprint surrounded by a cascade of laterally layered terraces. The solidifying glue rapidly produces crystals of KCl on these alluvial-like terraces. Since the properties of the glue affect the adhesion of the puparium to its substrate, and so can influence the success of metamorphosis, we evaluated over 80 different materials for their ability to adhere to the glue to determine which properties favor strong adhesion. We found that the alkaline Sgs-glue adheres strongly to wettable and positively charged surfaces but not to neutral or negatively charged and hydrophobic surfaces. Puparia formed on unfavored materials can be removed easily without leaving fingerprints or cascading terraces. For successful adhesion of the Sgs-glue, the material surface must display a specific type of triboelectric charge. Interestingly, the expectorated glue can move upwards against gravity on the surface of freshly formed puparia via specific, unique and novel anatomical structures present in the puparial's lateral abdominal segments that we have named bidentia.

Zobrazit více v PubMed

Palacio MLB, Bhushan B. Bioadhesion: a review of concepts and applications. Phil. Trans. R. Soc. 2012;A370:2321–2347. doi: 10.1098/rsta.2011.0483. PubMed DOI

Brahmbhatt D. Bioadhesive drug delivery systems: Overview and recent advances. Int. J. Chem. Lifesci. 2017;6(3):2016–2024.

Wunderer J, et al. A mechanism for temporary bioadhesion. Proc. Natl. Acad. Sci. USA. 2019;116:4297–4306. doi: 10.1073/pnas.1814230116. PubMed DOI PMC

Skaer H. The alimentary canal. In: Bate M, Martinez Arias A, editors. The Development of Drosophila Melanogaster. Cold Spring Harbor Press; 1993. pp. 941–1012.

Campos-Ortega JA, Hartenstein V. The embryonic development of Drosophila melanogaster. 2. Springer-Verlag; 1997.

Farkaš R. The complex secretions of the salivary glands of Drosophila melanogaster, a model system. In: Cohen E, Moussian B, editors. Extracellular Composite Matrices in Arthropods. Springer; 2016. pp. 557–599.

Korge G. Chromosome puff activity and protein synthesis in larval salivary glands of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 1975;72:4550–4554. doi: 10.1073/pnas.72.11.4550. PubMed DOI PMC

Korge G. Larval saliva in Drosophila melanogaster: Production, composition and relationship to chromosome puffs. Dev. Biol. 1977;58:339–355. doi: 10.1016/0012-1606(77)90096-3. PubMed DOI

Korge G. Direct correlation between a chromosome puff and the synthesis of a larval saliva protein in Drosophila melanogaster. Chromosoma. 1977;62:155–174. doi: 10.1007/BF00292637. PubMed DOI

Boyd M, Ashburner M. The hormonal control of salivary gland secretion in Drosophila melanogaster: Studies in vitro. J. Insect Physiol. 1977;23:517–523. doi: 10.1016/0022-1910(77)90263-3. DOI

Lehmann M. Drosophila Sgs genes: Stage and tissue specificity of hormone responsiveness. BioEssays. 1996;18:47–54. doi: 10.1002/bies.950180110. PubMed DOI

Fraenkel G, Brookes VJ. The process by which the puparia of many species of flies become fixed to a substrate. Biol. Bull. Mar. Lab. Woods Hole. 1953;105:442–449. doi: 10.2307/1538461. DOI

Farkaš R, Šuťáková G. Developmental regulation of granule size and numbers in larval salivary glands of Drosophila by steroid hormone ecdysone. Cell Biol. Int. 1999;23:671–676. doi: 10.1006/cbir.1999.0433. PubMed DOI

Ashburner M, Chihara C, Meltzer P, Richards G. Temporal control of puffing activity in polytene chromosomes. Cold Spring Harb. Symp. Quant. Biol. 1974;38:655–662. doi: 10.1101/SQB.1974.038.01.070. PubMed DOI

Ashburner M, Berendes HD. Puffing of polytene chromosomes. In: Ashburner M, Wright TRF, editors. The Genetics and Biology of Drosophila. Academic Press; 1978. pp. 315–395.

Burtis KC, Thummel CS, Jones CW, Karim FD, Hogness DS. The Drosophila 74EF early puff contains E74, a complex ecdysone-inducible gene that encodes two ets-related proteins. Cell. 1990;61:85–99. doi: 10.1016/0092-8674(90)90217-3. PubMed DOI

Thummel CS. Ecdysone-regulated puff genes 2000. Insect Biochem. Mol. Biol. 2002;32:113–120. doi: 10.1016/S0965-1748(01)00112-6. PubMed DOI

Muskavitch MA, Hogness DS. Molecular analysis of a gene in a developmentally regulated puff of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 1980;77:7362–7366. doi: 10.1073/pnas.77.12.7362. PubMed DOI PMC

Muskavitch MA, Hogness DS. An expandable gene that encodes a Drosophila glue protein is not expressed in variants lacking remote upstream sequences. Cell. 1982;29:1041–1051. doi: 10.1016/0092-8674(82)90467-6. PubMed DOI

Guild GM, Shore EM. Larval salivary gland secretion proteins in Drosophila Identification and characterization of the Sgs-5 structural gene. J. Mol. Biol. 1984;179:289–314. doi: 10.1016/0022-2836(84)90067-6. PubMed DOI

Restifo LL, Guild GM. An ecdysterone-responsive puff site in Drosophila contains a cluster of seven differentially regulated genes. J. Mol. Biol. 1986;188:517–528. doi: 10.1016/S0022-2836(86)80002-X. PubMed DOI

Wright LG, Chen T, Thummel CS, Guild GM. Molecular characterization of the 71E late puff in Drosophila melanogaster reveals a family of novel genes. J. Mol. Biol. 1996;255:387–400. doi: 10.1006/jmbi.1996.0032. PubMed DOI

Roth GE, Wattler S, Bornschein H, Lehmann M, Korge G. Structure and regulation of the salivary gland secretion protein gene Sgs-1 of Drosophila melanogaster. Genetics. 1999;153:753–762. doi: 10.1093/genetics/153.2.753. PubMed DOI PMC

Farkaš R. Apocrine secretion: New insights into an old phenomenon. Biochim. Biophys. Acta. 2015;1850:1740–1750. doi: 10.1016/j.bbagen.2015.05.003. PubMed DOI

Farkaš R, et al. Apocrine secretion in Drosophila salivary glands: Subcellular origin, dynamics, and identification of secretory proteins. PLOS One. 2014;9:e94383. doi: 10.1371/journal.pone.0094383. PubMed DOI PMC

Beňová-Liszeková D, et al. An apocrine mechanism delivers a fully immunocompetent exocrine secretion. Sci. Rep. 2021;11:5915. doi: 10.1038/s41598-021-95309-8. PubMed DOI PMC

Babišová K, et al. Apocrine secretion in the salivary glands of Drosophilidae and other dipterans is evolutionarily conserved. Front. Cell Dev. Biol. 2023;10:1088055. doi: 10.3389/fcell.2022.1088055. PubMed DOI PMC

Lane NJ, Carter YR, Ashburner M. Puffs and salivary gland function: the fine structure of the larval and prepupal salivary glands of Drosophila melanogaster. Wilhelm Roux's Arch. 1972;169:216–328. doi: 10.1007/BF00582554. PubMed DOI

von der Gaudecker B, Der, Strukturwandel der larvalen Speicheldrüse von Drosophila melanogaster. Ein Beitrag zur Frage nach der steuernden Wirkung aktiver Gene auf das Cytoplasma. Z. Zellforsch. 1972;127:50–86. doi: 10.1007/BF00582759. PubMed DOI

Farkaš R, Šuťáková G. Ultrastructural changes of Drosophila larval and prepupal salivary glands cultured in vitro with ecdysone. In Vitro Cell. Dev. Biol. Anim. 1998;34:813–823. doi: 10.1007/s11626-998-0036-7. PubMed DOI

Poels CL, de Loof A, Berendes HD. Functional and structural changes in Drosophila salivary gland cells triggered by ecdysterone. J. Insect Physiol. 1971;17:1717–1729. doi: 10.1016/0022-1910(71)90068-0. PubMed DOI

Harrod MJE, Kastritsis CD. Developmental studies in Drosophila. VI. Ultrastructural analysis of the salivary glands of Drosophila pseudoobscura during the late larval period. J. Ultrastruct. Res. 1972;40:292–312. doi: 10.1016/S0022-5320(72)90102-5. PubMed DOI

Beňová-Liszeková D, Beňo M, Farkaš R. Fine infrastructure of released and solidified Drosophila larval salivary secretory glue using SEM. Bionspiration Biomimetics. 2019;14:05500. PubMed

Biyasheva A, Do TV, Lu Y, Vaskova M, Andres AJ. Glue secretion in the Drosophila salivary gland: A model for steroid-regulated exocytosis. Dev. Biol. 2001;231:234–251. doi: 10.1006/dbio.2000.0126. PubMed DOI

Borne F, Kovalev A, Gorb S, Courtier-Orgogozo V. The glue produced by Drosophila melanogaster for pupa adhesion is universal. J. Exp. Biol. 2020;223:jeb220608. doi: 10.1242/jeb.220608. PubMed DOI

Takaoka M. Studies of the metamorphosis in insects IV. Inhibition of pupation by carbon dioxide in the mature larvae of Drosophila melanogaster. Embryologia. 1960;5:74–84. doi: 10.1111/j.1440-169X.1960.tb00267.x. DOI

Sokolowski MB. Genetics and ecology of Drosophila melanogaster larval foraging and pupation behavior. J. Insect Physiol. 1985;31:857–864. doi: 10.1016/0022-1910(85)90103-9. DOI

Singh BN, Pandey M. Intra- and interspecies variations in pupation height in Drosophila. Indian J. Exp. Biol. 1991;29:926–929. PubMed

Singh BN, Pandey MB. Selection for high and low pupation height in Drosophila ananassae. Behav. Genet. 1993;23:239–243. doi: 10.1007/BF01082461. PubMed DOI

Shivanna N, Murthy GS, Ramesh SR. Larval pupation site preference and its relationship to the glue proteins in a few species of Drosophila. Genome. 1996;39:105–111. doi: 10.1139/g96-014. PubMed DOI

Vandal NB, Modagi SA, Shivanna N. Larval pupation site preference in a few species of Drosophila. Indian J. Exp. Biol. 2003;41:918–920. PubMed

Vandal NB, Siddalingamurthy GS, Shivanna N. Larval pupation site preference on fruit in different species of Drosophila. Entomol. Res. 2008;38:188–194. doi: 10.1111/j.1748-5967.2008.00163.x. DOI

Beltrami M, Medina-Munoz MC, Arce D, Godoy-Herrera R. Drosophila pupation behavior in wild. Evol. Ecol. 2010;24:347–358. doi: 10.1007/s10682-009-9310-8. DOI

Del Pino F, Jara C, Godoy-Herrera R. The neuro-ecology of Drosophila pupation behavior. PLoS One. 2014;17:e102159. doi: 10.1371/journal.pone.0102159. PubMed DOI PMC

Fraenkel G, Bhaskaran G. Pupariation and pupation in cyclorrhaphous flies (Diptera): Terminology and interpretation. Ann. Entomol. Soc. Amer. 1973;66:418–422. doi: 10.1093/aesa/66.2.418. DOI

Bainbridge SP, Bownes M. Staging the metamorphosis of Drosophila melanogaster. J. Embryol. Exp. Morphol. 1981;66:57–80. PubMed

Ashburner M, Golic KG, Hawley RS. Drosophila. A Laboratory Handbook. 2. Cold Spring Harbor Press; 2005.

Farkaš R, Mechler BM. The timing of Drosophila salivary gland apoptosis displays an l(2)gl-dose response. Cell Death Differ. 2000;7:89–101. doi: 10.1038/sj.cdd.4400621. PubMed DOI

Heredia F, et al. The steroid-hormone ecdysone coordinates parallel pupariation neuromotor and morphogenetic subprograms via epidermis-to-neuron Dilp8-Lgr3 signal induction. Nat. Commun. 2021;12:3328. doi: 10.1038/s41467-021-23218-5. PubMed DOI PMC

Kramer HJM, van Rosmalen GM. Crystallization. In: Wilson I, editor. Encyclopedia of Separation Science. Academic Press; 2000. pp. 64–84.

Beckmann W, Budde U. Crystallization. In: Wilson I, editor. Encyclopedia of Separation Science. Academic Press; 2000. pp. 3729–3738.

Yu L, Reutzel-Edens SM. Crystallization basic principles. In: Caballero B, Trugo LC, Finglas PM, editors. Encyclopedia of Food Sciences and Nutrition. 2. Academic Press; 2003. pp. 1697–1702.

Yang XG, Zhai ZM, Lu XM, Ma LF, Yan DP. Fast crystallization-deposition of orderly molecule level heterojunction thin films showing tunable up-conversion and ultrahigh photoelectric response. ACS Cent. Sci. 2020;6:1169–1178. doi: 10.1021/acscentsci.0c00447. PubMed DOI PMC

Randolph AD, Larson MA. Theory of Particulate Processes. 2. Academic Press; 1988.

Nývlt J. Batch salting-out crystallization. Chem. Engin. Process. 1992;31:39–42. doi: 10.1016/0255-2701(92)80006-O. DOI

Hurle DTJ. Crystal Pulling from the Melt. Springer-Verlag; 1993.

Mullin JW. Crystallization. 4. Butterworth-Heinemann; 2001.

Myerson AS. Handbook of Industrial Crystallization. Butterworth-Heinemann; 1993.

Mersmann A. Crystallization Technology Handbook. Marcel Dekker Inc.; 1995.

Tavare NS. Industrial Crystallization. Process Simulation Analysis and Design (Plenum Press; 1995.

Croghan PC, Lockwood APM. The composition of the haemolymph of the larva of Drosophila melanogaster. J. Exp. Biol. 1960;37:339–343. doi: 10.1242/jeb.37.2.339. DOI

Wyatt GR. The biochemistry of insect hemolymph. Annu. Rev. Entomol. 1961;6:75–102. doi: 10.1146/annurev.en.06.010161.000451. DOI

Stobbart RH, Shaw J. Salt and water balance: excretion. In: Rockstein M, editor. The Physiology of Insecta. Academic Press; 1974. pp. 61–446.

Piyankarage SC, Featherstone DE, Shippy SA. Nanoliter hemolymph sampling and analysis of individual adult Drosophila melanogaster. Anal. Chem. 2012;84:4460–4466. doi: 10.1021/ac3002319. PubMed DOI

Dey A, Kumar Mukhopadhyay A. Nanoindentation of Natural Materials. Hierarchical and Functionally Graded Microstructures (CRC Press; 2019.

Neale MJ. The Tribology Handbook. 2. Butterworth-Heinemann; 1996.

Kuhn H, Medlin D. Mechanical Testing and Evaluation. ASM International; 2000.

Musil J, Kunc F, Zeman H, Poláková H. Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings. Surf. Coat. Technol. 2002;154:304–313. doi: 10.1016/S0257-8972(01)01714-5. DOI

Tiwari A, Natarajan S. Applied Nanoindentation in Advanced Materials. John Wiley & Sons Ltd.; 2017.

Fischer-Cripps AC. Nanoindentation. 3. Springer; 2011.

Němeček J. Nanoindentation in Materials Science. InTech; 2012.

Shaw MC, DeSalvo GJ. The role of elasticity in hardness testing. Metallogr. Microstruct. Anal. 2012;1:310–317. doi: 10.1007/s13632-012-0047-3. DOI

Lan H, Venkatesh TA. On the relationships between hardness and the elastic and plastic properties of isotropic power-law hardening materials. Philos. Magaz. 2014;94:35–55. doi: 10.1080/14786435.2013.839889. DOI

von Byern J, et al. Chemical characterization of the adhesive secretions of the salamander Plethodon shermani (Caudata, Plethodontidae) Sci. Rep. 2017;7:6647. doi: 10.1038/s41598-017-05473-z. PubMed DOI PMC

von Byern J, et al. Salamanders on the bench - A biocompatibility study of salamander skin secretions in cell cultures. Toxicon. 2017;135:24–32. doi: 10.1016/j.toxicon.2017.05.021. PubMed DOI

Oda T, Ueno K. Surface charge density measurement of dielectric films using ultrasonic vibration. IEEE Trans. Electric. Insulat. 1986;EI-21:375–381. doi: 10.1109/TEI.1986.349079. DOI

Yu N, Polycarpou AA. Combining and contacting of two rough surfaces with asymmetric distribution of asperity heights. J. Tribol. 2004;126:225–232. doi: 10.1115/1.1614822. DOI

Matsusyama T, Yamamoto H. Impact charging of particulate materials. Chem. Eng. Sci. 2006;61:2230–2238. doi: 10.1016/j.ces.2005.05.003. DOI

Burgo TAL, et al. Triboelectricity: Macroscopic charge patterns formed by self-arraying ions on polymer surfaces. Langmuir. 2012;28:7407–7416. doi: 10.1021/la301228j. PubMed DOI

Zhou YS, et al. In situ quantitative study of nanoscale triboelectrification and patterning. Nano Lett. 2013;13:2771–2776. doi: 10.1021/nl401006x. PubMed DOI

Zou H, et al. Quantifying the triboelectric series. Nat. Commun. 2019;10:1427. doi: 10.1038/s41467-019-09461-x. PubMed DOI PMC

Zou H, et al. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat. Commun. 2020;11:2093. doi: 10.1038/s41467-020-15926-1. PubMed DOI PMC

Sessler GM, Alquié C, Lewiner J. Charge distribution in Teflon FEP (fluoroethylenepropylene) negatively corona-charged to high potentials. J. Appl. Phys. 1992;71:2280. doi: 10.1063/1.351127. DOI

Diaz AF, Felix-Navarro RM. A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J. Electrostat. 2004;62:277–290. doi: 10.1016/j.elstat.2004.05.005. DOI

Park CH, Park JK, Jeon HS, Chunc BC. Triboelectric series and charging properties of plastics using the designed vertical-reciprocation charger. J. Electrostat. 2008;66:578–583. doi: 10.1016/j.elstat.2008.07.001. DOI

Sow M, Lacks DJ, Sankaran RM. Effects of material strain on triboelectric charging: Influence of material properties. J. Electrostat. 2013;71:396–399. doi: 10.1016/j.elstat.2012.11.021. DOI

Spicer, G. The principles of creating a magnetic mounting system: the physics every conservator needs to know In ICON Textile Group, From Boxes to Buildings: Creative Solutions for the Storage of Textiles and Dress 59–75 (Bath, UK, 2017).

Su GQ, et al. Experimental investigation of surface charge accumulation behaviors on PTFE insulator under DC and impulse voltage in vacuum. IEEE Trans. Dielec. Elec. Insul. 2017;24:3347–3356. doi: 10.1109/TDEI.2017.006604. DOI

Schröder S, Strunskus T, Rehders S, Gleason KK, Faupel F. Tunable polytetrafluoroethylene electret films with extraordinary charge stability synthesized by initiated chemical vapor deposition for organic electronics applications. Sci. Rep. 2019;9:2237. doi: 10.1038/s41598-018-38390-w. PubMed DOI PMC

Zhang X, Chen L, Jiang Y, Lim W, Soh S. Rationalizing the triboelectric series of polymers. Chem. Mater. 2019;31:1473–1478. doi: 10.1021/acs.chemmater.8b04526. DOI

Williams MW. Triboelectric charging of insulators - Mass transfer versus electrons/ions. J. Electrostat. 2012;70:233–234. doi: 10.1016/j.elstat.2012.01.001. DOI

Khandelwal G, Prashanth N, Raj MJ, Kim S-J. Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogenerators. Adv. Energy Mater. 2021;11:2101170. doi: 10.1002/aenm.202101170. DOI

Jenkins, C. Survey, static electricity in conservation. ConservationDistList (2018) Available at https://docs.google.com/forms/d/e/1FAIpQLSe972ZMp7PqRN33Dq7jWQQxogXjCUKYBEAQWIekWhCzAYmsA/formResponse.

Li D, Huson MG, Graham LD. (2008) Proteinaceous adhesive secretions from insects, and in particular the egg attachment glue of Opodiphthera sp. moths. Arch. Insect Biochem. Physiol. 2008;69:85–105. doi: 10.1002/arch.20267. PubMed DOI

Guvendiren M, Brass DA, Messersmith PB, Shull KR. Adhesion of DOPA-functionalized model membranes to hard and soft surfaces. J. Adhes. 2009;85:631–645. doi: 10.1080/00218460902997000. PubMed DOI PMC

Pandey N, et al. Mussel-inspired bioadhesives in healthcare: design parameters, current trends, and future perspectives. Biomater. Sci. 2020;8:1240–1255. doi: 10.1039/C9BM01848D. PubMed DOI PMC

Pudipeddi M, et al. Measurement of surface pH of pharmaceutical solids: a critical evaluation of indicator dye-sorption method and its comparison with slurry pH method. J. Pharm. Sci. 2008;97:1831–1842. doi: 10.1002/jps.21052. PubMed DOI

Hailu SA, Bogner RH. Solid-state surface acidity and pH-stability profiles of amorphous quinapril hydrochloride and silicate formulations. J. Pharm. Sci. 2010;99:2786–2799. doi: 10.1002/jps.22051. PubMed DOI

Tran PH-L, Tran TT-D, Lee K-H, Kim D-J, Lee B-J. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility. Expert Opin. Drug Deliv. 2010;7:647–661. doi: 10.1517/17425241003645910. PubMed DOI

Koopal LK. Wetting of solid surfaces: fundamentals and charge effects. Adv. Colloid Interface Sci. 2012;179–182:29–42. doi: 10.1016/j.cis.2012.06.009. PubMed DOI

Cleary J, Bromberg L, Magner E. Adhesion of polyether-modified poly(acrylic acid) to mucin. Langmuir. 2004;20:9755–9762. doi: 10.1021/la048993s. PubMed DOI

Cencer M, et al. Effect of pH on the rate of curing and bioadhesive properties of dopamine functionalized poly(ethylene glycol) hydrogels. Biomacromolecules. 2014;15:2861–2869. doi: 10.1021/bm500701u. PubMed DOI PMC

Yu J, et al. Adhesion of mussel foot protein-3 to TiO2 surfaces: The effect of pH. Biomacromolecules. 2013;14:1072–1077. doi: 10.1021/bm301908y. PubMed DOI PMC

Kan Y, Danner EW, Israelachvili JN, Chen Y, Waite JH. Boronate complex formation with Dopa containing mussel adhesive protein retards ph-induced oxidation and enables adhesion to mica. PLoS One. 2014;9:e108869. doi: 10.1371/journal.pone.0108869. PubMed DOI PMC

Maier GP, Rapp MV, Waite JH, Israelachvili JN, Butler A. Biological adhesives Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science. 2015;349:628–632. doi: 10.1126/science.aab0556. PubMed DOI

Waite JH. Mussel adhesion - essential footwork. J. Exp. Biol. 2017;220:517–530. doi: 10.1242/jeb.134056. PubMed DOI PMC

Norde W, Lyklema J. Interfacial behaviour of proteins, with special reference to immunoglobulins. A physicochemical study. Adv. Coll. Interf. Sci. 2012;179–182:5–13. doi: 10.1016/j.cis.2012.06.011. PubMed DOI

Voigt D, Gorb S. Egg attachment of the asparagus beetle Crioceris asparagi to the crystalline waxy surface of Asparagus officinalis. Proc. R. Soc. B. 2010;277:895–903. doi: 10.1098/rspb.2009.1706. PubMed DOI PMC

Lutz TM, Kimna C, Casini A, Lieleg O. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater. Today Bio. 2022;13:e100203. doi: 10.1016/j.mtbio.2022.100203. PubMed DOI PMC

Bernays EA, Chamberlain DJ. A study of tolerance of ingested tannin in Schistocerca gregaria. J. Insect Physiol. 1980;26:415–420. doi: 10.1016/0022-1910(80)90013-X. DOI

Hagerman AE, Butler LG. Tannins and lignins. In: Rosenthal GA, Berbenbaum MR, editors. Herbivores Their Interactions with Secondary Plant Metabolites. Academic Press; 1991. pp. 355–388.

Clausen TP, Reichardt PB, Bryant JP, Provenza F. Condensed tannins in plant defense: a perspective on classical theories. In: Hemingway RW, Laks PE, editors. Plant Polyphenols: Synthesis, Properties, Significance. Plenum Press; 1992. pp. 639–651.

Barbehenn RV, Weir Q, Salminen J-P. Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition. J. Chem. Ecol. 2008;34:748–756. doi: 10.1007/s10886-008-9478-3. PubMed DOI

David J-P, Ferran A, Gambier J, Meyran JC. Taste sensitivity of detritivorous mosquito larvae to decomposed leaf litter. J. Chem. Ecol. 2002;28:983–995. doi: 10.1023/A:1015257700992. PubMed DOI

Cardinal-Aucoin M, Bauce E, Albert PJ. Preingestive detection of tannins by Choristoneura fumiferana (Lepidoptera: Tortricidae) Ann. Entomol. Soc. Am. 2009;102:717–726. doi: 10.1603/008.102.0417. DOI

Scott IM, Thaler JS, Scott JG. Response of a generalist herbivore Trichoplusia ni to jasmonate-mediated induced defense in tomato. J. Chem. Ecol. 2010;36:490–499. doi: 10.1007/s10886-010-9780-8. PubMed DOI

Nicholls E, et al. A matter of taste: the adverse effect of pollen compounds on the pre-ingestive gustatory experience of sugar solutions for honeybees. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2019;205:333–346. doi: 10.1007/s00359-019-01347-z. PubMed DOI PMC

Dancewicz K, Szumny A, Wawrzeńczyk C, Gabryś B. Repellent and antifeedant activities of citral-derived lactones against the peach potato aphid. Int. J. Mol. Sci. 2020;21:8029. doi: 10.3390/ijms21218029. PubMed DOI PMC

Jie Y, et al. Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy. Adv. Energy Mater. 2018;8:1703133. doi: 10.1002/aenm.201703133. DOI

Feng Y, et al. Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy. 2019;55:260–268. doi: 10.1016/j.nanoen.2018.10.075. DOI

Ding Z, Zou M, Yao P, Zhu Z, Fan L. (2021) A novel triboelectric material based on deciduous leaf for energy harvesting. Micromachines. 2021;12:1314. doi: 10.3390/mi12111314. PubMed DOI PMC

Feng Y, et al. Green plant-based triboelectricity system for green energy harvesting and contact warning. EcoMat. 2021;3:e12145. doi: 10.1002/eom2.12145. DOI

Armiento S, Filippeschi C, Meder F, Mazzolai B. Liquid-solid contact electrification when water droplets hit living plant leaves. Commun. Mater. 2022;3:79. doi: 10.1038/s43246-022-00302-x. DOI

McDonell WR, Hart EJ. Oxidation of aqueous ferrous sulfate solutions by charged particle radiations. J. Am. Chem. Soc. 1954;76:2121–2124. doi: 10.1021/ja01637a024. DOI

Ouyang X, Xu S, Wang L, Huang J. Surface charge properties of marble powder and its effect on the formation of hydrates in cement paste. Crystals. 2020;10:e10100914. doi: 10.3390/cryst10100914. DOI

Knipling EF. A comparative study of the first-instar larvae of the genus Sarcophaga (Calliphoridae, Diptera), with notes on the biology. J. Parasitol. 1936;22:417–454. doi: 10.2307/3271688. DOI

Ferrar P. A guide to the breeding habits and immature stages of Diptera Cyclorrhapha. Entomonograph. 1987;8:1–907.

Watson JAL. The growth and activity of the corpora allata in the larval firebrat, Thermobia domestica (Packard) (Thysanura, Lepismatidae) Biol. Bull. Woods Hole. 1967;132:277–291. doi: 10.2307/1539895. PubMed DOI

Richards AG, Richards PA. The cuticular protuberances of insects. Int. J. Insect Morphol. Embryol. 1979;8:143–158. doi: 10.1016/0020-7322(79)90013-8. DOI

Keil TA, Steinbrecht RA. Mechanosensitive and olfactory sensilla of insects. In: King RC, Akai H, editors. Insect Ultrastructure. Plenum Press; 1984. pp. 477–516.

Sehnal F. Growth and life cycles. In: Kerkut GA, Gilbert LI, editors. Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon Press; 1985. pp. 1–86.

Sehnal F, Švácha P, Zrzavý J. Evolution of Insect Metamorphosis. In: Gilbert LI, Tata JR, Atkinson BG, editors. Metamorphosis: Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells. Academic Press; 1996. pp. 3–58.

Chapman RF. The Insects: Structure and Function. 4. Cambridge University Press; 1998.

Winterton SL. Scales and Setae. In: Resh VH, Carde RT, editors. Encyclopedia of Insects. Academic Press; 2009. pp. 901–904.

Hackman RH. Chitin and The Fine Structure of Cuticles. In: Wright JE, Retnakaran A, editors. Chitin and Benzoylphenylureas. W Junk Publishers, Kluwer Academic Publishers; 1987. pp. 1–32.

Roberts GAF. Chitin Chemistry. The MacMilllan Press; 1992.

Khor E, Wan ACA. Chitin: Fulfilling a Biomaterials Promise. 2. Elsevier; 2014.

Richards AG. The Integument of Arthropods. University of Minnesota Press; 1951.

Locke M. Cuticle and wax secretion in Calpodes etillius. (Lepidoptera, Hesperiidae) Quart. J. Microsc. Sci. 1960;101:333–338.

Locke M. The structure and formation of the integument in insects. In: Rockstein M, editor. Physiology of Insecta. Academic Press; 1964. pp. 379–470.

Locke M. The structure and formation of the integument in insects. In: Rockstein M, editor. The Physiology of Insecta. Academic Press; 1974. pp. 123–213.

Neville AC. Biology of the Arthropod Cuticle. Springer-Verlag; 1975.

Miller, T. A. Cuticle Techniques in Arthropods. Springer Series in Experimental Entomology (Springer-Verlag, 1980).

Filshie BK. Fine structure of the cuticle of insects and other arthropods. In: King RC, Akai H, editors. Insect Ultrastructure. Plenum Press; 1982. pp. 281–312.

Waku Y, Foldi I. The fine structure of insect glands secreting waxy substances. In: King RC, Akai H, editors. Insect Ultrastructure. Plenum Press; 1982. pp. 303–322.

Ghiradella H. Insect cuticular surface modifications: Scales and other structural formations. Adv. Insect Physiol. 2010;38:135–180. doi: 10.1016/S0065-2806(10)38006-4. DOI

Kuhn DT, Sawyer M, Ventimiglia J, Sprey TE. (1992) Cuticle morphology changes with each larval molt in Drosophila melanogaster. D.I.S. 1992;71:218–222.

Poodry CA. Epidermis: morphology and development. In: Ashburner M, Wright TRF, editors. The Genetics and Biology of Drosophila. Academic Press; 1980. pp. 443–497.

Segal D, Sprey TE. The dorsal/ventral compartment boundary in Drosophila: coincidence with the prospective operculum seam. Wilhelm Roux Arch. Dev. Biol. 1984;193:133–138. doi: 10.1007/BF00848888. PubMed DOI

Martinez-Arias A. Development and patterning of the larval epidermis of Drosophila. In: Martinez-Arias A, editor. The Development of Drosophila Melanogaster. CSHL Press; 1993. pp. 517–608.

Wipfler B, et al. The skeletomuscular system of the larva of Drosophila melanogaster (Drosophilidae, Diptera) - A contribution to the morphology of a model organism. Arthropod Struct. Dev. 2013;42:47–68. doi: 10.1016/j.asd.2012.09.005. PubMed DOI

Rotheray GE, Marcos-Garcia M-A, Hancock EG, Gilbert F. The systematic position of Alipumilio and Nausigaster based on early stages (Diptera, Syrphidae) Stud. Dipterol. 2000;7:133–144.

Burton RL, Starks KJ, Peters DC. The army cutworm. Oklahoma Agric. Exp. Station Bull. 1980;739:1–35.

Capinera JL. Encyclopedia of Entomology. Springer-Verlag; 2008.

Capinera JL. Handbook of Vegetable Pests. Academic Press; 2020.

Da Lage J-L, Thomas GWC, Bonneau M, Courtier-Orgogozo V. Evolution of salivary glue genes in Drosophila species. BMC Evol. Biol. 2019;19:36. doi: 10.1186/s12862-019-1364-9. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...