A salivary GMC oxidoreductase of Manduca sexta re-arranges the green leaf volatile profile of its host plant
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
805074
European Research Council - International
FP7-PEOPLE-2011-IEF-302388
European Research Council - International
PubMed
37380635
PubMed Central
PMC10307781
DOI
10.1038/s41467-023-39353-0
PII: 10.1038/s41467-023-39353-0
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- katalýza MeSH
- listy rostlin MeSH
- Manduca * MeSH
- tělesné tekutiny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Green leaf volatiles (GLVs) are short-chain oxylipins that are emitted from plants in response to stress. Previous studies have shown that oral secretions (OS) of the tobacco hornworm Manduca sexta, introduced into plant wounds during feeding, catalyze the re-arrangement of GLVs from Z-3- to E-2-isomers. This change in the volatile signal however is bittersweet for the insect as it can be used by their natural enemies, as a prey location cue. Here we show that (3Z):(2E)-hexenal isomerase (Hi-1) in M. sexta's OS catalyzes the conversion of the GLV Z-3-hexenal to E-2-hexenal. Hi-1 mutants that were raised on a GLV-free diet showed developmental disorders, indicating that Hi-1 also metabolizes other substrates important for the insect's development. Phylogenetic analysis placed Hi-1 within the GMCβ-subfamily and showed that Hi-1 homologs from other lepidopterans could catalyze similar reactions. Our results indicate that Hi-1 not only modulates the plant's GLV-bouquet but also functions in insect development.
Department of Ecology and Evolutionary Biology Cornell University Ithaca NY US
Department of Entomology National Taiwan University Taipei Taiwan
Department of Evolutionary Neuroethology Max Planck Institute for Chemical Ecology Jena Germany
Department of Insect Symbiosis Max Planck Institute for Chemical Ecology Jena Germany
Terrestrial Ecology Unit Department of Biology Faculty of Sciences Ghent University Ghent Belgium
Zobrazit více v PubMed
Kessler A, Baldwin IT. Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev. Plant Biol. 2002;53:299–328. doi: 10.1146/annurev.arplant.53.100301.135207. PubMed DOI
Clavijo McCormick A, Unsicker SB, Gershenzon J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 2012;17:303–310. doi: 10.1016/j.tplants.2012.03.012. PubMed DOI
Erb M, Reymond P. Molecular interactions between plants and insect Herbivores. Annu. Rev. Plant Biol. 2019;70:527–557. doi: 10.1146/annurev-arplant-050718-095910. PubMed DOI
Jones, A. C., Felton, G. W. & Tumlinson, J. H. The dual function of elicitors and effectors from insects: reviewing the ‘arms race’ against plant defenses. Plant Mol. Biol.109, 427–445(2021). PubMed
Acevedo FE, Rivera-Vega LJ, Chung SH, Ray S, Felton GW. Cues from chewing insects — the intersection of DAMPs, HAMPs, MAMPs and effectors. Curr. Opin. Plant Biol. 2015;26:80–86. doi: 10.1016/j.pbi.2015.05.029. PubMed DOI
Felton GW, Tumlinson JH. Plant–insect dialogs: complex interactions at the plant–insect interface. Curr. Opin. Plant Biol. 2008;11:457–463. doi: 10.1016/j.pbi.2008.07.001. PubMed DOI
Erb M. Volatiles as inducers and suppressors of plant defense and immunity—origins, specificity, perception and signaling. Curr. Opin. Plant Biol. 2018;44:117–121. doi: 10.1016/j.pbi.2018.03.008. PubMed DOI
Bouwmeester H, Schuurink RC, Bleeker PM, Schiestl F. The role of volatiles in plant communication. Plant J. 2019;100:892–907. doi: 10.1111/tpj.14496. PubMed DOI PMC
Dudareva N, Klempien A, Muhlemann JK, Kaplan I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. N. Phytologist. 2013;198:16–32. doi: 10.1111/nph.12145. PubMed DOI
Dicke M, Baldwin IT. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 2010;15:167–175. doi: 10.1016/j.tplants.2009.12.002. PubMed DOI
Turlings TCJ, Lengwiler UB, Bernasconi ML, Wechsler D. Timing of induced volatile emissions in maize seedlings. Planta. 1998;207:146–152. doi: 10.1007/s004250050466. DOI
Ameye M, et al. Green leaf volatile production by plants: a meta-analysis. N. Phytologist. 2018;220:666–683. doi: 10.1111/nph.14671. PubMed DOI
D’Auria JC, Pichersky E, Schaub A, Hansel A, Gershenzon J. Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant J. 2007;49:194–207. doi: 10.1111/j.1365-313X.2006.02946.x. PubMed DOI
Engelberth J. Green leaf volatiles: airborne signals that protect against biotic and abiotic stresses. Biol. Life Sci. Forum. 2021;4:101.
Scala A, Allmann S, Mirabella R, Haring MA, Schuurink RC. Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens. Int. J. Mol. Sci. 2013;14:17781–17811. doi: 10.3390/ijms140917781. PubMed DOI PMC
Matsui K. Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 2006;9:274–280. doi: 10.1016/j.pbi.2006.03.002. PubMed DOI
Farag MA, et al. (Z)-3-Hexenol induces defense genes and downstream metabolites in maize. Planta. 2005;220:900–909. doi: 10.1007/s00425-004-1404-5. PubMed DOI
Sufang Z, Jianing W, Zhen Z, Le K. Rhythms of volatiles release from healthy and insect-damaged Phaseolus vulgaris. Plant Signal Behav. 2013;8:25759. doi: 10.4161/psb.25759. PubMed DOI PMC
Shiojiri K, et al. Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc. Natl Acad. Sci. USA. 2006;103:16672–16676. doi: 10.1073/pnas.0607780103. PubMed DOI PMC
Savchenko T, Pearse IS, Ignatia L, Karban R, Dehesh K. Insect herbivores selectively suppress the HPL branch of the oxylipin pathway in host plants. Plant J. 2013;73:653–662. doi: 10.1111/tpj.12064. PubMed DOI
Takai H, et al. Silkworms suppress the release of green leaf volatiles by mulberry leaves with an enzyme from their spinnerets. Sci. Rep. 2018;8:11942. doi: 10.1038/s41598-018-30328-6. PubMed DOI PMC
Jones, A. C., Cofer, T. M., Engelberth, J. & Tumlinson, J. H. Herbivorous caterpillars and the green leaf volatile (GLV) quandary. J. Chem. Ecol.10.1007/s10886-021-01330-6 (2021). PubMed
Lin PA, et al. Silencing the alarm: an insect salivary enzyme closes plant stomata and inhibits volatile release. N. Phytol. 2021;230:793–803. doi: 10.1111/nph.17214. PubMed DOI PMC
Jones AC, et al. Herbivorous caterpillars can utilize three mechanisms to alter green leaf volatile emission. Environ. Entomol. 2019;48:419–425. doi: 10.1093/ee/nvy191. PubMed DOI
Allmann S, Halitschke R, Schuurink RC, Baldwin IT. Oxylipin channelling in Nicotiana attenuata: lipoxygenase 2 supplies substrates for green leaf volatile production. Plant, Cell Environ. 2010;33:2028–2040. doi: 10.1111/j.1365-3040.2010.02203.x. PubMed DOI
Allmann S, et al. Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition. Elife. 2013;2:e00421. doi: 10.7554/eLife.00421. PubMed DOI PMC
Allmann S, Baldwin IT. Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science. 2010;329:1075–1078. doi: 10.1126/science.1191634. PubMed DOI
Kunishima M, et al. Identification of (Z)-3:(E)-2-hexenal isomerases essential to the production of the leaf aldehyde in plants. J. Biol. Chem. 2016;291:14023–14033. doi: 10.1074/jbc.M116.726687. PubMed DOI PMC
Spyropoulou EA, et al. Identification and Characterization of (3Z):(2E)-Hexenal Isomerases from Cucumber. Front Plant Sci. 2017;8:1342. doi: 10.3389/fpls.2017.01342. PubMed DOI PMC
Gershman A, et al. De novo genome assembly of the tobacco hornworm moth (Manduca sexta) G3 (Bethesda) 2021;11:jkaa047. doi: 10.1093/g3journal/jkaa047. PubMed DOI PMC
Sun W, et al. Expansion of the silkworm GMC oxidoreductase genes is associated with immunity. Insect Biochem Mol. Biol. 2012;42:935–945. doi: 10.1016/j.ibmb.2012.09.006. PubMed DOI
Kirsch R, et al. Host plant shifts affect a major defense enzyme in Chrysomela lapponica. Proc. Natl Acad. Sci. USA. 2011;108:4897–4901. doi: 10.1073/pnas.1013846108. PubMed DOI PMC
Michalski C, Mohagheghi H, Nimtz M, Pasteels J, Ober D. Salicyl alcohol oxidase of the chemical defense secretion of two chrysomelid leaf beetles. Molecular and functional characterization of two new members of the glucose-methanol-choline oxidoreductase gene family. J. Biol. Chem. 2008;283:19219–19228. doi: 10.1074/jbc.M802236200. PubMed DOI
Rahfeld P, et al. Independently recruited oxidases from the glucose-methanol-choline oxidoreductase family enabled chemical defences in leaf beetle larvae (subtribe Chrysomelina) to evolve. Proc. Biol. Sci. 2014;281:20140842. PubMed PMC
Lu F, et al. SilkDB 3.0: visualizing and exploring multiple levels of data for silkworm. Nucleic Acids Res. 2019;48:D749–D755. PubMed PMC
De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH. Herbivore-infested plants selectively attract parasitoids. Nature. 1998;393:570–573. doi: 10.1038/31219. DOI
Turlings TCJ, Erb M. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 2018;63:433–452. doi: 10.1146/annurev-ento-020117-043507. PubMed DOI
Arce CM, Besomi G, Glauser G, Turlings TCJ. Caterpillar-induced volatile emissions in cotton: the relative importance of damage and insect-derived factors. Front. Plant Sci. 2021;12:709858. doi: 10.3389/fpls.2021.709858. PubMed DOI PMC
Gaquerel E, Weinhold A, Baldwin IT. Molecular interactions between the specialist herbivore manduca sexta (Lepidoptera, Sphigidae) and its natural Host Nicotiana attenuata. VIII. An unbiased GCxGC-ToFMS analysis of the Plant’s elicited volatile emissions. Plant Physiol. 2009;149:1408–1423. doi: 10.1104/pp.108.130799. PubMed DOI PMC
Frey M, et al. An herbivore elicitor activates the gene for indole emission in maize. Proc. Natl Acad. Sci. 2000;97:14801–14806. doi: 10.1073/pnas.260499897. PubMed DOI PMC
De Lange ES, et al. Spodoptera frugiperda caterpillars suppress Herbivore-induced volatile emissions in Maize. J. Chem. Ecol. 2020;46:344–360. doi: 10.1007/s10886-020-01153-x. PubMed DOI
Sützl L, Foley G, Gillam EMJ, Bodén M, Haltrich D. The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases. Biotechnol. Biofuels. 2019;12:118. doi: 10.1186/s13068-019-1457-0. PubMed DOI PMC
Wongnate T, Chaiyen P. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose–methanol–choline superfamily. FEBS J. 2013;280:3009–3027. doi: 10.1111/febs.12280. PubMed DOI
Yamashita M, et al. Separation of the two reactions, oxidation and isomerization, catalyzed by Streptomyces cholesterol oxidase. Protein Eng., Des. Selection. 1998;11:1075–1081. doi: 10.1093/protein/11.11.1075. PubMed DOI
Stadtman TC, Cherkes A, Anfinsen CB. Studies on the microbiological degradation of cholesterol. J. Biol. Chem. 1954;206:511–523. doi: 10.1016/S0021-9258(19)50819-5. PubMed DOI
Bubliy OA, Imasheva AG, Loeschcke V. Half-sib analysis of three morphological traits in Drosophila melanogaster under poor nutrition. Hereditas. 2000;133:59–63. doi: 10.1111/j.1601-5223.2000.00059.x. PubMed DOI
Dadd RH. Insect nutrition: current developments and metabolic implications. Annu Rev. Entomol. 1973;18:381–420. doi: 10.1146/annurev.en.18.010173.002121. PubMed DOI
Levinson HZ, Navon A. Ascorbic acid and unsaturated fatty acids in the nutrition of the Egyptian cotton leafworm, Prodenia litura. J. Insect Physiol. 1969;15:591–595. doi: 10.1016/0022-1910(69)90257-1. DOI
Rosenthal GA, Dahlman DL. Non-protein amino acid-insect interactions—II. Effects of canaline-urea cycle amino acids on growth and development of the tobacco hornworm, Manduca Sexta L. (Sphingidae) Comp. Biochem. Physiol. Part A: Physiol. 1975;52:105–108. doi: 10.1016/S0300-9629(75)80138-1. PubMed DOI
Nohara C, et al. Ingestion of radioactively contaminated diets for two generations in the pale grass blue butterfly. BMC Evolut. Biol. 2014;14:193. doi: 10.1186/s12862-014-0193-0. PubMed DOI PMC
Geer BW, Vovis GF. The effects of choline and related compounds on the growth and development of Drosophila melanogaster. J. Exp. Zool. 1965;158:223–236. doi: 10.1002/jez.1401580209. PubMed DOI
Iida K, Cavener DR. Glucose dehydrogenase is required for normal sperm storage and utilization in female Drosophila melanogaster. J. Exp. Biol. 2004;207:675–681. doi: 10.1242/jeb.00816. PubMed DOI
Li Z, et al. Ectopic expression of ecdysone oxidase impairs tissue degeneration in Bombyx mori. Proc. R. Soc. B: Biol. Sci. 2015;282:20150513. doi: 10.1098/rspb.2015.0513. PubMed DOI PMC
Wybouw N, et al. Convergent evolution of cytochrome P450s underlies independent origins of keto-carotenoid pigmentation in animals. Proc. R. Soc. B: Biol. Sci. 2019;286:20191039. doi: 10.1098/rspb.2019.1039. PubMed DOI PMC
Jensen NB, et al. Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects. Nat. Commun. 2011;2:273. doi: 10.1038/ncomms1271. PubMed DOI PMC
Phillips DR, Matthew JA, Reynolds J, Fenwick GR. Partial purification and properties of a cis−3: trans−2-enal isomerase from cucumber fruit. Phytochemistry. 1979;18:401–404. doi: 10.1016/S0031-9422(00)81874-9. DOI
Noordermeer MA, Veldink GA, Vliegenthart JFG. Alfalfa contains substantial 9-hydroperoxide lyase activity and a 3Z: 2E-enal isomerase. Febs Lett. 1999;443:201–204. doi: 10.1016/S0014-5793(98)01706-2. PubMed DOI
Takamura H, Gardner HW. Oxygenation of (3Z)-alkenal to (2E)-4-hydroxy-2-alkenal in soybean seed (Glycine max L) Biochimica Et. Biophysica Acta-Lipids Lipid Metab. 1996;1303:83–91. doi: 10.1016/0005-2760(96)00076-8. PubMed DOI
Chen C, et al. Characterization of a new (Z)-3:(E)-2-hexenal isomerase from tea (Camellia sinensis) involved in the conversion of (Z)-3-hexenal to (E)-2-hexenal. Food Chem. 2022;383:132463. doi: 10.1016/j.foodchem.2022.132463. PubMed DOI
Almagro Armenteros JJ, Sønderby CK, Sønderby SK, Nielsen H, Winther O. DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics. 2017;33:3387–3395. doi: 10.1093/bioinformatics/btx431. PubMed DOI
Almagro Armenteros JJ, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019;37:420–423. doi: 10.1038/s41587-019-0036-z. PubMed DOI
Bendtsen JD, Jensen LJ, Blom N, von Heijne G, Brunak S. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng., Des. Selection. 2004;17:349–356. doi: 10.1093/protein/gzh037. PubMed DOI
Bendtsen JD, Kiemer L, Fausbøll A, Brunak S. Non-classical protein secretion in bacteria. BMC Microbiol. 2005;5:58. doi: 10.1186/1471-2180-5-58. PubMed DOI PMC
Zhang Y, et al. Comparative proteome analysis of multi-layer cocoon of the silkworm, Bombyx mori. PLoS One. 2015;10:e0123403. doi: 10.1371/journal.pone.0123403. PubMed DOI PMC
Huang HJ, et al. Identification of salivary proteins in the whitefly Bemisia tabaci by transcriptomic and LC-MS/MS analyses. Insect Sci. 2021;28:1369–1381. doi: 10.1111/1744-7917.12856. PubMed DOI
Farkaš R, et al. Apocrine secretion in Drosophila salivary glands: subcellular origin, dynamics, and identification of secretory proteins. PLOS ONE. 2014;9:e94383. doi: 10.1371/journal.pone.0094383. PubMed DOI PMC
Farkaš R. Apocrine secretion: new insights into an old phenomenon. Biochimica et. Biophysica Acta (BBA) - Gen. Subj. 2015;1850:1740–1750. doi: 10.1016/j.bbagen.2015.05.003. PubMed DOI
Aumüller G, Wilhelm B, Seitz J. Apocrine secretion — fact or artifact. Ann. Anat. - Anatomischer Anz. 1999;181:437–446. doi: 10.1016/S0940-9602(99)80020-X. PubMed DOI
Bassett AR, Liu J-L. CRISPR/Cas9 and genome editing in Drosophila. J. Genet. Genomics. 2014;41:7–19. doi: 10.1016/j.jgg.2013.12.004. PubMed DOI
Hospital F. Selection in backcross programmes. Philos. Trans. R. Soc. B: Biol. Sci. 2005;360:1503–1511. doi: 10.1098/rstb.2005.1670. PubMed DOI PMC
Meldau S, Wu J, Baldwin IT. Silencing two herbivory-activated MAP kinases, SIPK and WIPK, does not increase Nicotiana attenuata’s susceptibility to herbivores in the glasshouse and in nature. N. Phytologist. 2009;181:161–173. doi: 10.1111/j.1469-8137.2008.02645.x. PubMed DOI
Kessler A, Baldwin IT. Defensive function of herbivore-induced plant volatile emissions in nature. Science. 2001;291:2141–2144. doi: 10.1126/science.291.5511.2141. PubMed DOI
Zipfel C. Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Biol. 2009;12:414–420. doi: 10.1016/j.pbi.2009.06.003. PubMed DOI
Yoshinaga N, et al. Active role of fatty acid amino acid conjugates in nitrogen metabolism in Spodoptera litura larvae. Proc. Natl Acad. Sci. USA. 2008;105:18058–18063. doi: 10.1073/pnas.0809623105. PubMed DOI PMC
Lievers R, Kuperus P, Groot AT. DNA methylation patterns in the tobacco budworm, Chloridea virescens. Insect Biochem. Mol. Biol. 2020;121:103370. doi: 10.1016/j.ibmb.2020.103370. PubMed DOI
Chang Y, et al. Snellenius manilae bracovirus suppresses the host immune system by regulating extracellular adenosine levels in Spodoptera litura. Sci. Rep. 2020;10:2096. doi: 10.1038/s41598-020-58375-y. PubMed DOI PMC
Lin YH, et al. Adenosine receptor modulates permissiveness of baculovirus (Budded Virus) infection via regulation of energy metabolism in bombyx mori. Front Immunol. 2020;11:763. doi: 10.3389/fimmu.2020.00763. PubMed DOI PMC
Roda A, Halitschke R, Steppuhn A, Baldwin IT. Individual variability in herbivore-specific elicitors from the plant’s perspective. Mol. Ecol. 2004;13:2421–2433. doi: 10.1111/j.1365-294X.2004.02260.x. PubMed DOI
Schägger H, von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987;166:368–379. doi: 10.1016/0003-2697(87)90587-2. PubMed DOI
Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 1996;68:850–858. doi: 10.1021/ac950914h. PubMed DOI
Pauchet Y, et al. Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for digestion, detoxification and defence. Insect Mol. Biol. 2010;19:61–75. doi: 10.1111/j.1365-2583.2009.00936.x. PubMed DOI
Kanost MR, et al. Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochem. Mol. Biol. 2016;76:118–147. doi: 10.1016/j.ibmb.2016.07.005. PubMed DOI PMC
Dhonukshe P, et al. Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development. 2010;137:3245–3255. doi: 10.1242/dev.052456. PubMed DOI
Karimi M, De Meyer B, Hilson P. Modular cloning in plant cells. Trends Plant Sci. 2005;10:103–105. doi: 10.1016/j.tplants.2005.01.008. PubMed DOI
Voinnet O, Rivas S, Mestre P, Baulcombe D. Retracted: An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 2003;33:949–956. doi: 10.1046/j.1365-313X.2003.01676.x. PubMed DOI
Zhang X, Henriques R, Lin S-S, Niu Q-W, Chua N-H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 2006;1:641–646. doi: 10.1038/nprot.2006.97. PubMed DOI
Fielder S, Rowan DD. The synthesis of 3,4-2H2-3Z-hexenal and 6,6,6-2H3-3Z-hexenal. J. Label. Compd. Radiopharmaceuticals. 1995;36:465–470. doi: 10.1002/jlcr.2580360510. DOI
Fandino RA, et al. Mutagenesis of odorant coreceptor Orco fully disrupts foraging but not oviposition behaviors in the hawkmoth Manduca sexta. Proc. Natl Acad. Sci. USA. 2019;116:15677–15685. doi: 10.1073/pnas.1902089116. PubMed DOI PMC
Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 2014;42:W401–W407. doi: 10.1093/nar/gku410. PubMed DOI PMC
Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 2016;44:W272–W276. doi: 10.1093/nar/gkw398. PubMed DOI PMC
Labun K, et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 2019;47:W171–W174. doi: 10.1093/nar/gkz365. PubMed DOI PMC
Kessler A, Baldwin IT. MANDUCA QUINQUEMACULATA’S OPTIMIZATION OF INTRA-PLANT OVIPOSITION TO PREDATION, FOOD QUALITY, AND THERMAL CONSTRAINTS. Ecology. 2002;83:2346–2354. doi: 10.1890/0012-9658(2002)083[2346:MQSOOI]2.0.CO;2. DOI
Chandler CH, Chari S, Dworkin I. Does your gene need a background check? How genetic background impacts the analysis of mutations, genes, and evolution. Trends Genet. 2013;29:358–366. doi: 10.1016/j.tig.2013.01.009. PubMed DOI PMC
Cheng T, et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat. Ecol. Evolution. 2017;1:1747–1756. doi: 10.1038/s41559-017-0314-4. PubMed DOI
Fritz ML, et al. Contemporary evolution of a Lepidopteran species, Heliothis virescens, in response to modern agricultural practices. Mol. Ecol. 2018;27:167–181. doi: 10.1111/mec.14430. PubMed DOI
Eddy SR. Accelerated profile HMM searches. PLOS Computational Biol. 2011;7:e1002195. doi: 10.1371/journal.pcbi.1002195. PubMed DOI PMC
Shen J, et al. Complete genome of Pieris rapae, a resilient alien, a cabbage pest, and a source of anti-cancer proteins. F1000Res. 2016;5:2631. doi: 10.12688/f1000research.9765.1. PubMed DOI PMC
Zhan S, Merlin C, Boore JL, Reppert SM. The monarch butterfly genome yields insights into long-distance migration. Cell. 2011;147:1171–1185. doi: 10.1016/j.cell.2011.09.052. PubMed DOI PMC
Iida K, Cox-Foster DL, Yang X, Ko W-Y, Cavener DR. Expansion and evolution of insect GMC oxidoreductases. BMC Evolut. Biol. 2007;7:75. doi: 10.1186/1471-2148-7-75. PubMed DOI PMC
Kirsch R, et al. To be or not to be convergent in salicin-based defence in chrysomeline leaf beetle larvae: evidence from Phratora vitellinae salicyl alcohol oxidase. Proc. Biol. Sci. 2011;278:3225–3232. PubMed PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Minh BQ, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018;35:518–522. doi: 10.1093/molbev/msx281. PubMed DOI PMC