Adenosine Receptor Modulates Permissiveness of Baculovirus (Budded Virus) Infection via Regulation of Energy Metabolism in Bombyx mori
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32411148
PubMed Central
PMC7198810
DOI
10.3389/fimmu.2020.00763
Knihovny.cz E-zdroje
- Klíčová slova
- Bombyx mori, Spodoptera frugiperda, adenosine signaling, baculovirus, gloverin, glycolysis,
- MeSH
- adenosin metabolismus MeSH
- adenosintrifosfát biosyntéza MeSH
- bourec metabolismus virologie MeSH
- deoxyglukosa farmakologie MeSH
- energetický metabolismus MeSH
- glykolýza účinky léků genetika MeSH
- hmyzí proteiny metabolismus MeSH
- infekce DNA virem metabolismus virologie MeSH
- interakce hostitele a patogenu imunologie MeSH
- mezibuněčné signální peptidy a proteiny metabolismus MeSH
- nukleopolyhedroviry fyziologie MeSH
- purinergní receptory P1 genetika metabolismus MeSH
- replikace viru účinky léků MeSH
- Sf9 buňky MeSH
- Spodoptera MeSH
- transfekce MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosin MeSH
- adenosintrifosfát MeSH
- deoxyglukosa MeSH
- gloverin MeSH Prohlížeč
- hmyzí proteiny MeSH
- mezibuněčné signální peptidy a proteiny MeSH
- purinergní receptory P1 MeSH
Although the modulation of host physiology has been interpreted as an essential process supporting baculovirus propagation, the requirement of energy supply for host antivirus reactions could not be ruled out. Our present study showed that metabolic induction upon AcMNPV (budded virus) infection of Bombyx mori stimulated virus clearance and production of the antivirus protein, gloverin. In addition, we demonstrated that adenosine receptor signaling (AdoR) played an important role in regulating such metabolic reprogramming upon baculovirus infection. By using a second lepidopteran model, Spodoptera frugiperda Sf-21 cells, we demonstrated that the glycolytic induction regulated by adenosine signaling was a conservative mechanism modulating the permissiveness of baculovirus infection. Another interesting finding in our present study is that both BmNPV and AcMNPV infection cause metabolic activation, but it appears that BmNPV infection moderates the level of ATP production, which is in contrast to a dramatic increase upon AcMNPV infection. We identified potential AdoR miRNAs induced by BmNPV infection and concluded that BmNPV may attempt to minimize metabolic activation by suppressing adenosine signaling and further decreasing the host's anti-baculovirus response. Our present study shows that activation of energy synthesis by adenosine signaling upon baculovirus infection is a host physiological response that is essential for supporting the innate immune response against infection.
Biology Centre of the Czech Academy of Science Institute of Entomology Ceske Budejovice Czechia
Department of Entomology National Taiwan University Taipei Taiwan
Faculty of Science University of South Bohemia Ceske Budejovice Czechia
Zobrazit více v PubMed
Chen YW, Wu CP, Wu TC, Wu YL. Analyses of the transcriptome of bombyx mori cells infected with either BmNPV or AcMNPV. J Asia Pac Entomol. (2018) 21:37–45. 10.1016/j.aspen.2017.10.009 DOI
Blissard GW, Rohrmann GF. Baculovirus diversity and molecular biology. Annu Rev Entomol. (1990) 35:127–55. 10.1146/annurev.en.35.010190.001015 PubMed DOI
Smith GE, Summer MD, Fraser MJ. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol. (1983) 2156–65. 10.1128/MCB.3.12.2156 PubMed DOI PMC
Yue W, Miao Y, Li X, Wu X, Zhao A, Nakagaki M. Cloning and expression of manganese superoxide dismutase of the silkworm, bombyx mori by Bac-to-Bac/BmNPV baculovirus expression system. Appl Microbiol Biotechnol. (2006) 73:181–6. 10.1007/s00253-006-0462-y PubMed DOI
Gomi S, Majima K, Maeda S. Sequence analysis of the genome of bombyx mori nucleopolyhedrovirus. J Gen Virol. (1999) 80:1323–37. 10.1099/0022-1317-80-5-1323 PubMed DOI
Iwanaga M, Takaya K, Katsuma S, Ote M, Tanaka S, Kamita SG, et al. . Expression profiling of baculovirus genes in permissive and nonpermissive cell lines. Biochem Biophys Res Commun. (2004) 323:599–614. 10.1016/j.bbrc.2004.08.114 PubMed DOI
Woo SD, Roh JY, Choi JY, Jin BR. Propagation of bombyx mori nucleopolyhedrovirus in nonpermissive insect cell lines. J Microbiol. (2007) 45:133–8. PubMed
Martin O, Croizier G. Infection of a spodoptera frugiperda cell line with bombyx mori nucleopolyhedrovirus. Virus Res. (1997) 47:179–85. 10.1016/S0168-1702(96)01412-8 PubMed DOI
Monteiro F, Carinhas N, Carrondo MJ, Bernal V, Alves PM. Toward system-level understanding of baculovirus-host cell interactions: from molecular fundamental studies to large-scale proteomics approaches. Front Microbiol. (2012) 3:391. 10.3389/fmicb.2012.00391 PubMed DOI PMC
Kamen AA, Bedard C, Tom R, Perret S, Jardin B. On-line monitoring of respiration in recombinant-baculovirus infected and uninfected insect cell bioreactor cultures. Biotechnol Bioeng. (1996) 50:36–48. 10.1002/(SICI)1097-0290(19960405)50:1<36::AID-BIT5>3.0.CO;2-2 PubMed DOI
Iwanaga M, Shimada T, Kobayashi M, Kang W. Identification of differentially expressed host genes in bombyx mori nucleopolyhedrovirus infected cells by using subtractive hybridization. Appl Entomol Zool. (2007) 42:151–9. 10.1303/aez.2007.151 DOI
Bernal V, Carinhas N, Yokomizo AY, Carrondo MJ, Alves PM. Cell density effect in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol Bioeng. (2009) 104:162–80. 10.1002/bit.22364 PubMed DOI
Nguyen Q, Nielsen LK, Reid S. Genome scale transcriptomics of baculovirus-insect interactions. Viruses. (2013) 5:2721–47. 10.3390/v5112721 PubMed DOI PMC
Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, et al. . SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol. (2012) 13:223–8. 10.1038/ni.2236 PubMed DOI PMC
Blanc M, Hsieh WY, Robertson KA, Watterson S, Shui G, Lacaze P, et al. . Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol. (2011) 9:e1000598. 10.1371/journal.pbio.1000598 PubMed DOI PMC
Bartholomay LC, Cho WL, Rocheleau TA, Boyle JP, Beck ET, Fuchs JF, et al. . Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors aedes aegypti and Armigeres subalbatus. Infect Immun. (2004) 72:4114–26. 10.1128/IAI.72.7.4114-4126.2004 PubMed DOI PMC
Shelby KS, Popham HJ. RNA-Seq study of microbially induced hemocyte transcripts from larval heliothis virescens (lepidoptera: noctuidae). Insects. (2012) 3:743–62. 10.3390/insects3030743 PubMed DOI PMC
Dolezal T, Krejcova G, Bajgar A, Nedbalova P, Strasser P. Molecular regulations of metabolism during immune response in insects. Insect Biochem Mol Biol. (2019) 109:31–42. 10.1016/j.ibmb.2019.04.005 PubMed DOI
Bajgar A, Kucerova K, Jonatova L, Tomcala A, Schneedorferova I, Okrouhlik J, et al. . Extracellular adenosine mediates a systemic metabolic switch during immune response. PLoS Biol. (2015) 13:e1002135. 10.1371/journal.pbio.1002135 PubMed DOI PMC
Anderson RS, Holmes B, Good RA. Comparative biochemistry of phagocytizing insect hemocytes. Comp Biochem Physiol B Comp Biochem. (1973) 46:595–602. 10.1016/0305-0491(73)90099-0 PubMed DOI
Bajgar A, Dolezal T. Extracellular adenosine modulates host-pathogen interactions through regulation of systemic metabolism during immune response in Drosophila. PLoS Pathog. (2018) 14:e1007022. 10.1371/journal.ppat.1007022 PubMed DOI PMC
Singh T, Singh PK, Sahaf KA. Egg diapause and metabolic modulations during embryonic development in the silkworm, bombyx mori L. Ann Biol Res. (2013) 4:12–21.
Lo H-R, Chao Y-C. Rapid titer determination of baculovirus by quantitative real-time polymerase chain reaction. Biotechnol Prog. (2004) 20:354–60. 10.1021/bp034132i PubMed DOI
Wu PC, Lin YH, Wu TC, Lee ST, Wu CP, Chang Y, et al. . MicroRNAs derived from the insect virus HzNV-1 promote lytic infection by suppressing histone methylation. Sci Rep. (2018) 8:17817. 10.1038/s41598-018-35782-w PubMed DOI PMC
Hu YT, Tang CK, Wu CP, Wu PC, Yang EC, Tai CC, et al. . Histone deacetylase inhibitor treatment restores memory-related gene expression and learning ability in neonicotinoid-treated apis mellifera. Insect Mol Biol. (2018) 27:512–21. 10.1111/imb.12390 PubMed DOI
Matsumoto Y, Ishii M, Sekimizu K. An in vivo invertebrate evaluation system for identifying substances that suppress sucrose-induced postprandial hyperglycemia. Sci Rep. (2016) 6:26354. 10.1038/srep26354 PubMed DOI PMC
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C-T method. Nat Protoc. (2008) 3:1101–8. 10.1038/nprot.2008.73 PubMed DOI
Brown J. Effects of 2-deoxyglucose on carbohydrate metablism: review of the literature and studies in the rat. Metabolism. (1962) 11:1098–112. PubMed
Lu F, Wei Z, Luo Y, Guo H, Zhang G, Xia Q, et al. . SilkDB 3.0: visualizing and exploring multiple levels of data for silkworm. Nucleic Acids Res. (2020) 48:D749–55. 10.1093/nar/gkz919 PubMed DOI PMC
Jiang L, Peng Z, Guo Y, Cheng T, Guo H, Sun Q, et al. . Transcriptome analysis of interactions between silkworm and cytoplasmic polyhedrosis virus. Sci Rep. (2016) 6:24894. 10.1038/srep24894 PubMed DOI PMC
Chang Y, Tang CK, Lin YH, Tsai CH, Lu YH, Wu YL. Snellenius manilae bracovirus suppresses the host immune system by regulating extracellular adenosine levels in spodoptera litura. Sci Rep. (2020) 10:2096. 10.1038/s41598-020-58375-y PubMed DOI PMC
Banerjee U, Girard JR, Goins LM, Spratford CM. Drosophila as a genetic model for hematopoiesis. Genetics. (2019) 211:367–417. 10.1534/genetics.118.300223 PubMed DOI PMC
Poernbacher I, Vincent JP. Epithelial cells release adenosine to promote local TNF production in response to polarity disruption. Nat Commun. (2018) 9:4675. 10.1038/s41467-018-07114-z PubMed DOI PMC
Wu Q, Patocka J, Kuca K. Insect antimicrobial peptides, a mini review. Toxins. (2018) 10:461. 10.3390/toxins10110461 PubMed DOI PMC
Choi JY, Roh JY, Wang Y, Zhen Z, Tao XY, Lee JH, et al. . Analysis of genes expression of spodoptera exigua larvae upon AcMNPV infection. PLoS ONE. (2012) 7:e42462. 10.1371/journal.pone.0042462 PubMed DOI PMC
Bao YY, Lv ZY, Liu ZB, Xue J, Xu YP, Zhang CX. Comparative analysis of bombyx mori nucleopolyhedrovirus responsive genes in fat body and haemocyte of B. mori resistant and susceptible strains. Insect Mol Biol. (2010) 19:347–58. 10.1111/j.1365-2583.2010.00993.x PubMed DOI
Moreno-Habel DA, Biglang-awa IM, Dulce A, Luu DD, Garcia P, Weers PM, et al. . Inactivation of the budded virus of autographa californica M nucleopolyhedrovirus by gloverin. J Invertebr Pathol. (2012) 110:92–101. 10.1016/j.jip.2012.02.007 PubMed DOI PMC
Nagamine T, Sako Y. A role for the anti-viral host defense mechanism in the phylogenetic divergence in baculovirus evolution. PLoS ONE. (2016) 11:e0156394. 10.1371/journal.pone.0156394 PubMed DOI PMC
Jiang L, Xia Q. The progress and future of enhancing antiviral capacity by transgenic technology in the silkworm bombyx mori. Insect Biochem Mol Biol. (2014) 48:1–7. 10.1016/j.ibmb.2014.02.003 PubMed DOI
Ponnuvel KM, Nakazawa H, Furukawa S, Asaoka A, Ishibashi J, Tanaka H, et al. . A lipase isolated from the silkworm bombyx mori shows antiviral activity against nucleopolyhedrovirus. J Virol. (2003) 77:10725–9. 10.1128/JVI.77.19.10725-10729.2003 PubMed DOI PMC
Yao H, He F, Guo A, Cao C, Lu X, Wu X. Gene analysis of an antiviral protein SP-2 from Chinese wild silkworm, bombyx mandarina moore and its bioactivity assay. Sci China C Life Sci. (2008) 51:879–84. 10.1007/s11427-008-0123-8 PubMed DOI
Tran TT, Dietmair S, Chan LC, Huynh HT, Nielsen LK, Reid S. Development of quenching and washing protocols for quantitative intracellular metabolite analysis of uninfected and baculovirus-infected insect cells. Methods. (2012) 56:396–407. 10.1016/j.ymeth.2011.11.009 PubMed DOI
Rera M, Clark RI, Walker DW. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc Natl Acad Sci USA. (2012) 109:21528–33. 10.1073/pnas.1215849110 PubMed DOI PMC
Roth SW, Bitterman MD, Birnbaum MJ, Bland ML. Innate immune signaling in Drosophila blocks insulin signaling by uncoupling PI(3,4,5)P3 production and Akt activation. Cell Rep. (2018) 22:2550–56. 10.1016/j.celrep.2018.02.033 PubMed DOI PMC
Clark RI, Tan SW, Pean CB, Roostalu U, Vivancos V, Bronda K, et al. . MEF2 is an in vivo immune-metabolic switch. Cell. (2013) 155:435–47. 10.1016/j.cell.2013.09.007 PubMed DOI PMC
Antonioli L, Csoka B, Fornai M, Colucci R, Kokai E, Blandizzi C, et al. . Adenosine and inflammation: what's new on the horizon? Drug Discov Today. (2014) 19:1051–68. 10.1016/j.drudis.2014.02.010 PubMed DOI
Mondal BC, Mukherjee T, Mandal L, Evans CJ, Sinenko SA, Martinez-Agosto JA, et al. . Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell. (2011) 147:1589–600. 10.1016/j.cell.2011.11.041 PubMed DOI PMC
Lee JS, Yilmaz O. Unfolding role of a danger molecule adenosine signaling in modulation of microbial infection and host cell response. Int J Mol Sci. (2018) 19:199. 10.3390/ijms19010199 PubMed DOI PMC