Extracellular adenosine mediates a systemic metabolic switch during immune response

. 2015 Apr ; 13 (4) : e1002135. [epub] 20150427

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25915062

Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the "selfish" immune cells send during infection to secure more energy at the expense of other tissues.

Komentář v

PubMed

Zobrazit více v PubMed

Fong YM, Marano M a, Moldawer LL, Wei H, Calvano SE, Kenney JS, et al. The acute splanchnic and peripheral tissue metabolic response to endotoxin in humans. J Clin Invest. 1990;85: 1896–1904. PubMed PMC

Straub RH, Cutolo M, Buttgereit F, Pongratz G. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med. 2010;267: 543–560. 10.1111/j.1365-2796.2010.02218.x PubMed DOI

Cheng S-C, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, et al. mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345: 1250684 10.1126/science.1250684 PubMed DOI PMC

Delmastro-Greenwood MM, Piganelli JD. Changing the energy of an immune response. Am J Clin Exp Immunol. 2013;2: 30–54. PubMed PMC

Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science. 2001;292: 504–507. PubMed

Clark RI, Tan SWS, Péan CB, Roostalu U, Vivancos V, Bronda K, et al. MEF2 Is an In Vivo Immune-Metabolic Switch. Cell. 2013;155: 435–447. 10.1016/j.cell.2013.09.007 PubMed DOI PMC

Hartman ZC, Kiang A, Everett RS, Serra D, Yang XY, Clay TM, et al. Adenovirus infection triggers a rapid, MyD88-regulated transcriptome response critical to acute-phase and adaptive immune responses in vivo. J Virol. 2007;81: 1796–1812. PubMed PMC

Rynes J, Donohoe CD, Frommolt P, Brodesser S, Jindra M, Uhlirova M. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis. Mol Cell Biol. 2012;32: 3949–3962. 10.1128/MCB.00429-12 PubMed DOI PMC

Yoo J-Y, Desiderio S. Innate and acquired immunity intersect in a global view of the acute-phase response. Proc Natl Acad Sci U S A. 2003;100: 1157–1162. PubMed PMC

Calder PC. Feeding the immune system. Proc Nutr Soc. 2013;72: 299–309. 10.1017/S0029665113001286 PubMed DOI

Matarese G, La Cava A, Sanna V, Lord GM, Lechler RI, Fontana S, et al. Balancing susceptibility to infection and autoimmunity: a role for leptin? Trends Immunol. 2002;23: 182–187. PubMed

Rauw WM. Immune response from a resource allocation perspective. Front Genet. 2012;3: 267–267. 10.3389/fgene.2012.00267 PubMed DOI PMC

Arsenijevic D, Garcia I, Vesin C, Vesin D, Arsenijevic Y, Seydoux J, et al. Differential roles of tumor necrosis factor-a and interferon-g in mouse hypermetabolic and anorectic responses induced by LPS. Eur Cytokine Netw. 2000;11: 662–668. PubMed

Matarese G, La Cava A. The intricate interface between immune system and metabolism. Trends Immunol. 2004;25: 193–200. PubMed

Tracey KJ, Cerami A. Tumor Necrosis Factor and Regulation of Metabolism in Infection: Role of Systemic versus Tissue Levels. Exp Biol Med. 1992;200: 233–239. PubMed

Tsigos C, Papanicolaou DA, Kyrou I, Defensor R, Mitsiadis CS, Chrousos GP. Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J Clin Endocrinol Metab. 1997;82: 4167–4170. PubMed

Wolowczuk I, Verwaerde C, Viltart O, Delanoye A, Delacre M, Pot B, et al. Feeding our immune system: impact on metabolism. Clin Dev Immunol. 2008;2008: 639803 10.1155/2008/639803 PubMed DOI PMC

Chambers MC, Song KH, Schneider DS. Listeria monocytogenes infection causes metabolic shifts in Drosophila melanogaster. PLoS ONE. 2012;7: e50679 10.1371/journal.pone.0050679 PubMed DOI PMC

Dionne MS, Pham LN, Shirasu-Hiza M, Schneider DS. Akt and FOXO dysregulation contribute to infection-induced wasting in Drosophila. Curr Biol. 2006;16: 1977–1985. PubMed

Dionne M. Immune-metabolic interaction in Drosophila. Fly (Austin). 2014;8: 1–5. PubMed PMC

Hull-Thompson J, Muffat J, Sanchez D, Walker DW, Benzer S, Ganfornina MD, et al. Control of metabolic homeostasis by stress signaling is mediated by the lipocalin NLaz. PLoS Genet. 2009;5: e1000460 10.1371/journal.pgen.1000460 PubMed DOI PMC

Buck LT. Adenosine as a signal for ion channel arrest in anoxia-tolerant organisms. Comp Biochem Physiol Part B. 2004;139: 401–414. PubMed

Newby AC. Adenosine and the concept of “retaliatory metabolites.” Trends Biochem Sci. 1984;9: 42–44.

Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5’-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther. 2006;112: 358–404. PubMed

Da Silva CG, Jarzyna R, Specht A, Kaczmarek E. Extracellular nucleotides and adenosine independently activate AMP-activated protein kinase in endothelial cells: involvement of P2 receptors and adenosine transporters. Circ Res. 2006;98: e39–47. PubMed PMC

Fishman P, Bar-Yehuda S, Barer F, Madi L, Multani AS, Pathak S. The A3 Adenosine Receptor as a New Target for Cancer Therapy and Chemoprotection. Exp Cell Res. 2001;269: 230–236. PubMed

Jinka TR, T?ien? ivind, Drew KL. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A1 receptors. J Neurosci. 2011;31: 10752–10758. 10.1523/JNEUROSCI.1240-11.2011 PubMed DOI PMC

Krumschnabel G, Biasi C, Wieser W. Action of adenosine on energetics, protein synthesis and K(+) homeostasis in teleost hepatocytes. J Exp Biol. 2000;203: 2657–2665. PubMed

Pék M, Lutz PL. Role for adenosine in channel arrest in the anoxic turtle brain. J Exp Biol. 1997;200: 1913–1917. PubMed

Cortés D, Guinzberg R, Villalobos-Molina R, Piña E. Evidence that endogenous inosine and adenosine-mediated hyperglycaemia during ischaemia–reperfusion through A3 adenosine receptors. Auton Autacoid Pharmacol. 2009;29: 157–164. 10.1111/j.1474-8665.2009.00443.x PubMed DOI

Martin C, Leone M, Viviand X, Ayem ML, Guieu R. High adenosine plasma concentration as a prognostic index for outcome in patients with septic shock. Crit Care Med. 2000;28: 3198–3202. PubMed

Kumar V, Sharma A. Adenosine: an endogenous modulator of innate immune system with therapeutic potential. Eur J Pharmacol. 2009;616: 7–15. 10.1016/j.ejphar.2009.05.005 PubMed DOI

Dolezal T, Dolezelova E, Zurovec M, Bryant PJ. A role for adenosine deaminase in Drosophila larval development. PLoS Biol. 2005;3: e201 PubMed PMC

Dolezelova E, Nothacker H-P, Civelli O, Bryant PJ, Zurovec M. A Drosophila adenosine receptor activates cAMP and calcium signaling. Insect Biochem Mol Biol. 2007;37: 318–329. PubMed

Fenckova M, Hobizalova R, Fric ZF, Dolezal T. Functional characterization of ecto-5’-nucleotidases and apyrases in Drosophila melanogaster. Insect Biochem Mol Biol. 2011;41: 956–967. 10.1016/j.ibmb.2011.09.005 PubMed DOI

Knight D, Harvey PJ, Iliadi KG, Klose MK, Iliadi N, Dolezelova E, et al. Equilibrative nucleoside transporter 2 regulates associative learning and synaptic function in Drosophila. J Neurosci Off J Soc Neurosci. 2010;30: 5047–5057. PubMed PMC

Zurovec M, Dolezal T, Gazi M, Pavlova E, Bryant PJ. Adenosine deaminase-related growth factors stimulate cell proliferation in Drosophila by depleting extracellular adenosine. Proc Natl Acad Sci U S A. 2002;99: 4403–4408. PubMed PMC

Zuberova M, Fenckova M, Simek P, Janeckova L, Dolezal T. Increased extracellular adenosine in Drosophila that are deficient in adenosine deaminase activates a release of energy stores leading to wasting and death. Dis Model Mech. 2010;3: 773–784. 10.1242/dmm.005389 PubMed DOI

Novakova M, Dolezal T. Expression of Drosophila adenosine deaminase in immune cells during inflammatory response. PLoS ONE. 2011;6: e17741 10.1371/journal.pone.0017741 PubMed DOI PMC

Keebaugh ES, Schlenke TA. Insights from natural host–parasite interactions: The Drosophila model. Dev Comp Immunol. 2014;42: 111–123. 10.1016/j.dci.2013.06.001 PubMed DOI PMC

Krzemien J, Oyallon J, Crozatier M, Vincent A. Hematopoietic progenitors and hemocyte lineages in the Drosophila lymph gland. Dev Biol. 2010;346: 310–319. 10.1016/j.ydbio.2010.08.003 PubMed DOI

Kacsoh BZ, Schlenke TA. High Hemocyte Load Is Associated with Increased Resistance against Parasitoids in Drosophila suzukii, a Relative of D. melanogaster. PLoS ONE. 2012;7: e34721 10.1371/journal.pone.0034721 PubMed DOI PMC

Sorrentino RP, Melk JP, Govind S. Genetic Analysis of Contributions of Dorsal Group and JAK-Stat92E Pathway Genes to Larval Hemocyte Concentration and the Egg Encapsulation Response in Drosophila. Genetics. 2004;166: 1343–1356. PubMed PMC

Reyes-DelaTorre A, Teresa M, Rafael J. Carbohydrate Metabolism in Drosophila: Reliance on the Disaccharide Trehalose. In: Chang C-F, editor. Carbohydrates—Comprehensive Studies on Glycobiology and Glycotechnology. InTech; 2012. Available: http://www.intechopen.com/books/carbohydrates-comprehensive-studies-on-glycobiology-and-glycotechnology/carbohydrate-metabolism-in-drosophila-reliance-on-the-disaccharide-trehalose

Ayres JS, Schneider DS. The role of anorexia in resistance and tolerance to infections in Drosophila. PLoS Biol. 2009;7: e1000150–e1000150. 10.1371/journal.pbio.1000150 PubMed DOI PMC

Machado J, Abdulla P, Hanna WJB, Hilliker AJ, Coe IR. Genomic analysis of nucleoside transporters in Diptera and functional characterization of DmENT2, a Drosophila equilibrative nucleoside transporter. Physiol Genomics. 2007;28: 337–347. PubMed

Brand a H, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Dev Camb Engl. 1993;118: 401–415. PubMed

Peters A, Schweiger U, Pellerin L, Hubold C, Oltmanns KM, Conrad M, et al. The selfish brain: competition for energy resources. Neurosci Biobehav Rev. 2004;28: 143–180. PubMed

Straub RH. Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases. Arthritis Res Ther. 2014;16: S4 10.1186/ar4688 PubMed DOI PMC

Mondal BC, Mukherjee T, Mandal L, Evans CJ, Sinenko SA, Martinez-Agosto JA, et al. Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell. 2011;147: 1589–1600. 10.1016/j.cell.2011.11.041 PubMed DOI PMC

Morin-Poulard I, Vincent A, Crozatier M. The Drosophila JAK-STAT pathway in blood cell formation and immunity. JAK-STAT. 2013;2: e25700 10.4161/jkst.25700 PubMed DOI PMC

Makki R, Meister M, Pennetier D, Ubeda J-M, Braun A, Daburon V, et al. A short receptor downregulates JAK/STAT signalling to control the Drosophila cellular immune response. PLoS Biol. 2010;8: e1000441–e1000441. 10.1371/journal.pbio.1000441 PubMed DOI PMC

Andersen S. The roles of insulin and hyperglycemia in sepsis pathogenesis. J Leukoc Biol. 2004;75: 413–421. PubMed

Faulhaber-Walter R, Jou W, Mizel D, Li L, Zhang J, Kim SM, et al. Impaired Glucose Tolerance in the Absence of Adenosine A1 Receptor Signaling. Diabetes. 2011;60: 2578–2587. 10.2337/db11-0058 PubMed DOI PMC

Figler RA, Wang G, Srinivasan S, Jung DY, Zhang Z, Pankow JS, et al. Links Between Insulin Resistance, Adenosine A2B Receptors, and Inflammatory Markers in Mice and Humans. Diabetes. 2011;60: 669–679. 10.2337/db10-1070 PubMed DOI PMC

Németh ZH, Csóka B, Wilmanski J, Xu D, Lu Q, Ledent C, et al. Adenosine A2A Receptor Inactivation Increases Survival in Polymicrobial Sepsis. J Immunol. 2006;176: 5616–5626. PubMed PMC

Sullivan GW, Fang G, Linden J, Scheld WM. A2A Adenosine Receptor Activation Improves Survival in Mouse Models of Endotoxemia and Sepsis. J Infect Dis. 2004;189: 1897–1904. PubMed

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37: 911–917. PubMed

Tennessen JM, Barry W, Cox J, Thummel CS. Methods for studying metabolism in Drosophila. Methods. 2014;68: 105–115. 10.1016/j.ymeth.2014.02.034 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Glucose and trehalose metabolism through the cyclic pentose phosphate pathway shapes pathogen resistance and host protection in Drosophila

. 2024 May ; 22 (5) : e3002299. [epub] 20240507

JAK/STAT mediated insulin resistance in muscles is essential for effective immune response

. 2024 Apr 02 ; 22 (1) : 203. [epub] 20240402

How to eliminate pathogen without killing oneself? Immunometabolism of encapsulation and melanization in Drosophila

. 2023 ; 14 () : 1330312. [epub] 20231206

Adenosine Receptor and Its Downstream Targets, Mod(mdg4) and Hsp70, Work as a Signaling Pathway Modulating Cytotoxic Damage in Drosophila

. 2021 ; 9 () : 651367. [epub] 20210312

Polarization of Macrophages in Insects: Opening Gates for Immuno-Metabolic Research

. 2021 ; 9 () : 629238. [epub] 20210215

Adenosine Receptor Modulates Permissiveness of Baculovirus (Budded Virus) Infection via Regulation of Energy Metabolism in Bombyx mori

. 2020 ; 11 () : 763. [epub] 20200428

Physiological Tradeoffs of Immune Response Differs by Infection Type in Pieris napi

. 2020 ; 11 () : 576797. [epub] 20210113

Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense

. 2019 Oct 14 ; 8 () : . [epub] 20191014

Extracellular adenosine modulates host-pathogen interactions through regulation of systemic metabolism during immune response in Drosophila

. 2018 Apr ; 14 (4) : e1007022. [epub] 20180427

Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle

. 2016 Feb ; 6 (2) : 150155.

Adenosine: a selfish-immunity signal?

. 2015 Oct 20 ; 6 (32) : 32307-8.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...