Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
G0500926
Medical Research Council - United Kingdom
MR/L007177/1
Medical Research Council - United Kingdom
PubMed
26887408
PubMed Central
PMC4772804
DOI
10.1098/rsob.150155
PII: rsob.150155
Knihovny.cz E-zdroje
- Klíčová slova
- Notch targets, Warburg effect, glycolytic shift, metabolism, tissue growth,
- MeSH
- aktivace transkripce MeSH
- biologické modely MeSH
- buněčné linie MeSH
- citrátový cyklus genetika MeSH
- energetický metabolismus genetika MeSH
- exprese genu MeSH
- glykolýza genetika MeSH
- lidé MeSH
- promotorové oblasti (genetika) MeSH
- proteiny Drosophily genetika metabolismus MeSH
- receptory Notch genetika metabolismus MeSH
- regulace genové exprese * MeSH
- regulační oblasti nukleových kyselin MeSH
- reportérové geny MeSH
- represorové proteiny genetika metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny Drosophily MeSH
- receptory Notch MeSH
- represorové proteiny MeSH
- Su(H) protein, Drosophila MeSH Prohlížeč
Glycolytic shift is a characteristic feature of rapidly proliferating cells, such as cells during development and during immune response or cancer cells, as well as of stem cells. It results in increased glycolysis uncoupled from mitochondrial respiration, also known as the Warburg effect. Notch signalling is active in contexts where cells undergo glycolytic shift. We decided to test whether metabolic genes are direct transcriptional targets of Notch signalling and whether upregulation of metabolic genes can help Notch to induce tissue growth under physiological conditions and in conditions of Notch-induced hyperplasia. We show that genes mediating cellular metabolic changes towards the Warburg effect are direct transcriptional targets of Notch signalling. They include genes encoding proteins involved in glucose uptake, glycolysis, lactate to pyruvate conversion and repression of the tricarboxylic acid cycle. The direct transcriptional upregulation of metabolic genes is PI3K/Akt independent and occurs not only in cells with overactivated Notch but also in cells with endogenous levels of Notch signalling and in vivo. Even a short pulse of Notch activity is able to elicit long-lasting metabolic changes resembling the Warburg effect. Loss of Notch signalling in Drosophila wing discs as well as in human microvascular cells leads to downregulation of glycolytic genes. Notch-driven tissue overgrowth can be rescued by downregulation of genes for glucose metabolism. Notch activity is able to support growth of wing during nutrient-deprivation conditions, independent of the growth of the rest of the body. Notch is active in situations that involve metabolic reprogramming, and the direct regulation of metabolic genes may be a common mechanism that helps Notch to exert its effects in target tissues.
Central European Institute of Technology Masaryk University Kamenice 5 625 00 Brno Czech Republic
Faculty of Science University of South Bohemia Branisovska 31 37005 Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Krejci A. 2012. Metabolic sensors and their interplay with cell signalling and transcription. Biochem. Soc. Trans. 40, 311–323. (doi:10.1042/BST20110767) PubMed DOI
Wellen KE, Thompson CB. 2012. A two-way street: reciprocal regulation of metabolism and signalling. Nat. Rev. Mol. Cell Biol. 13, 270–276. (doi:10.1038/nrm3305) PubMed DOI
Dang L, et al. 2009. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744. (doi:10.1038/nature08617) PubMed DOI PMC
Warburg O. 1956. On the origin of cancer cells. Science 123, 309–314. (doi:10.1126/science.123.3191.309) PubMed DOI
Ward PS, Thompson CB. 2012. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21, 297–308. (doi:10.1016/j.ccr.2012.02.014) PubMed DOI PMC
Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC. 2011. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+T cell subsets. J. Immunol. 186, 3299–3303. (doi:10.4049/jimmunol.1003613) PubMed DOI PMC
De Bock K, et al. 2013. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663. (doi:10.1016/j.cell.2013.06.037) PubMed DOI
Zhou W, et al. 2012. HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 31, 2103–2116. (doi:10.1038/emboj.2012.71) PubMed DOI PMC
Tennessen JM, Bertagnolli NM, Evans J, Sieber MH, Cox J, Thummel CS. 2014. Coordinated metabolic transitions during Drosophila embryogenesis and the onset of aerobic glycolysis. G3 (Bethesda) 4, 839–850. (doi:10.1534/g3.114.010652) PubMed DOI PMC
Tennessen JM, Baker KD, Lam G, Evans J, Thummel CS. 2011. The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metab. 13, 139–148. (doi:10.1016/j.cmet.2011.01.005) PubMed DOI PMC
Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH. 1997. Phosphorylation and activation of heart 6 -phosphofructo-2 -kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J. Biol. Chem. 272, 17 269–17 275. (doi:10.1074/jbc.272.28.17269) PubMed DOI
Agani F, Jiang BH. 2013. Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr. Cancer Drug Targets 13, 245–251. (doi:10.2174/1568009611313030003) PubMed DOI
Dibble CC, Manning BD. 2013. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol. 15, 555–564. (doi:10.1038/ncb2763) PubMed DOI PMC
Zhao Y, Butler EB, Tan M. 2013. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 4, e532 (doi:10.1038/cddis.2013.60) PubMed DOI PMC
Estella C, Baonza A. 2015. Cell proliferation control by Notch signalling during imaginal discs development in Drosophila. AIMS Genet. 2, 70–96. (doi:10.3934/genet.2015.1.70) DOI
Ntziachristos P, Lim JS, Sage J, Aifantis I. 2014. From fly wings to targeted cancer therapies: a centennial for Notch signaling. Cancer Cell 25, 318–334. (doi:10.1016/j.ccr.2014.02.018) PubMed DOI PMC
Palomero T, et al. 2006. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl Acad. Sci. USA 103, 18 261–18 266. (doi:10.1073/pnas.0606108103) PubMed DOI PMC
Wang H, et al. 2011. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc. Natl Acad. Sci. USA 108, 14 908–14 913. (doi:10.1073/pnas.1109023108) PubMed DOI PMC
Landor SK et al. . 2011. Hypo- and hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms. Proc. Natl Acad. Sci. USA 108, 18 814–18 819. (doi:10.1073/pnas.1104943108) PubMed DOI PMC
Gustafsson MV, et al. 2005. Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628. (doi:10.1016/j.devcel.2005.09.010) PubMed DOI
Mukherjee T, Kim WS, Mandal L, Banerjee U. 2011. Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science 332, 1210–1213. (doi:10.1126/science.1199643) PubMed DOI PMC
Basak NP, Roy A, Banerjee S. 2014. Alteration of mitochondrial proteome due to activation of Notch1 signaling pathway. J. Biol. Chem. 289, 7320–7334. (doi:10.1074/jbc.M113.519405) PubMed DOI PMC
Saj A, et al. 2010. A combined ex vivo and in vivo RNAi screen for Notch regulators in Drosophila reveals an extensive Notch interaction network. Dev. Cell 18, 862–876. (doi:10.1016/j.devcel.2010.03.013) PubMed DOI
Djiane A, Krejci A, Bernard F, Fexova S, Millen K, Bray SJ. 2013. Dissecting the mechanisms of Notch induced hyperplasia. EMBO J. 32, 60–71. (doi:10.1038/emboj.2012.326) PubMed DOI PMC
Zhou D, Xue J, Lai JC, Schork NJ, White KP, Haddad GG. 2008. Mechanisms underlying hypoxia tolerance in Drosophila melanogaster: hairy as a metabolic switch. PLoS Genet. 4, e1000221 (doi:10.1371/journal.pgen.1000221) PubMed DOI PMC
Krejci A, Bray S. 2007. Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers. Genes Dev. 21, 1322–1327. (doi:10.1101/gad.424607) PubMed DOI PMC
Hooper KL, Parkhurst SM, Ish-Horowicz D. 1989. Spatial control of hairy protein expression during embryogenesis. Development 107, 489–504. PubMed
Joshi I, et al. 2009. Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood 113, 1689–1698. (doi:10.1182/blood-2008-03-147967) PubMed DOI PMC
Ling H, Sylvestre JR, Jolicoeur P. 2010. Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors. Oncogene 29, 4543–4554. (doi:10.1038/onc.2010.186) PubMed DOI
Cheng HT, Miner JH, Lin M, Tansey MG, Roth K, Kopan R. 2003. Gamma-secretase activity is dispensable for mesenchyme-to-epithelium transition but required for podocyte and proximal tubule formation in developing mouse kidney. Development 130, 5031–5042. (doi:10.1242/dev.00697) PubMed DOI
Housden BE, Li J, Bray SJ. 2014. Visualizing Notch signaling in vivo in Drosophila tissues. Methods Mol. Biol. 1187, 101–113. (doi:10.1007/978-1-4939-1139-4_8) PubMed DOI
Maekawa Y, Ishifune C, Tsukumo S, Hozumi K, Yagita H, Yasutomo K. 2015. Notch controls the survival of memory CD4+T cells by regulating glucose uptake. Nat. Med. 21, 55–61. (doi:10.1038/nm.3758) PubMed DOI
Takubo K, et al. 2013. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12, 49–61. (doi:10.1016/j.stem.2012.10.011) PubMed DOI PMC
Ochocki JD, Simon MC. 2013. Nutrient-sensing pathways and metabolic regulation in stem cells. J. Cell Biol. 203, 23–33. (doi:10.1083/jcb.201303110) PubMed DOI PMC
Koch U, Lehal R, Radtke F. 2013. Stem cells living with a Notch. Development 140, 689–704. (doi:10.1242/dev.080614) PubMed DOI
Bajgar A, Kucerova K, Jonatova L, Tomcala A, Schneedorferova I, Okrouhlik J, Dolezal T. 2015. Extracellular adenosine mediates a systemic metabolic switch during immune response. PLoS Biol. 13, e1002135 (doi:10.1371/journal.pbio.1002135) PubMed DOI PMC
Radtke F, MacDonald HR, Tacchini-Cottier F. 2013. Regulation of innate and adaptive immunity by Notch. Nat. Rev. Immunol. 13, 427–437. (doi:10.1038/nri3445) PubMed DOI
Delgado TC, Castro MM, Geraldes CF, Jones JG. 2004. Quantitation of erythrocyte pentose pathway flux with [2-13C] glucose and 1H NMR analysis of the lactate methyl signal. Magn. Reson. Med. 51, 1283–1286. (doi:10.1002/mrm.20096) PubMed DOI
Lee KM, Nam K, Oh S, Lim J, Lee T, Shin I. 2015. ECM1 promotes the Warburg effect through EGF-mediated activation of PKM2. Cell Signal. 27, 228–235. (doi:10.1016/j.cellsig.2014.11.004) PubMed DOI
Mondal S, et al. 2015. HSulf-1 deficiency dictates a metabolic reprograming of glycolysis and TCA cycle in ovarian cancer. Oncotarget. 6, 33 705–33 719. (doi:10.18632/oncotarget.5605) PubMed DOI PMC
Li Z, Li X, Wu S, Xue M, Chen W. 2014. Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci. 105, 951–955. (doi:10.1111/cas.12461) PubMed DOI PMC
Kim J, Sebring A, Esch JJ, Kraus ME, Vorwerk K, Magee J, Carroll SB. 1996. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature 382, 133–138. (doi:10.1038/382133a0) PubMed DOI
Krejci A, Bernard F, Housden BE, Collins S, Bray SJ. 2009. Direct response to Notch activation: signaling crosstalk and incoherent logic. Sci. Signal. 2, ra1. (doi:10.1126/scisignal.2000140) PubMed DOI
Zheng X, et al. 2008. Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc. Natl Acad. Sci. USA 105, 3368–3373. (doi:10.1073/pnas.0711591105) PubMed DOI PMC
Li J, Housden BE, Bray SJ. 2014. Notch signaling assays in Drosophila cultured cell lines. Methods Mol. Biol. 1187, 131–141. (doi:10.1007/978-1-4939-1139-4_10) PubMed DOI
Fehon RG, Kooh PJ, Rebay I, Regan CL, Xu T, Muskavitch MA, Artavanis-Tsakonas S. 1990. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61, 523–534. (doi:10.1016/0092-8674(90)90534-L) PubMed DOI
Ejsmont RK, Bogdanzaliewa M, Lipinski KA, Tomancak P. 2011. Production of fosmid genomic libraries optimized for liquid culture recombineering and cross-species transgenesis. Methods Mol. Biol. 772, 423–443. (doi:10.1007/978-1-61779-228-1_25) PubMed DOI
Bernard F, Krejci A, Housden B, Adryan B, Bray SJ. 2010. Specificity of Notch pathway activation: twist controls the transcriptional output in adult muscle progenitors. Development 137, 2633–2642. (doi:10.1242/dev.053181) PubMed DOI PMC
Rebay I, Fehon RG, Artavanis-Tsakonas S. 1993. Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell 74, 319–329. (doi:10.1016/0092-8674(93)90423-N) PubMed DOI
Furriols M, Bray S. 2000. Dissecting the mechanisms of suppressor of hairless function. Dev. Biol. 227, 520–532. (doi:10.1006/dbio.2000.9923) PubMed DOI
Sellick CA, Hansen R, Maqsood AR, Dunn WB, Stephens GM, Goodacre R, Dickson AJ. 2009. Effective quenching processes for physiologically valid metabolite profiling of suspension cultured mammalian cells. Anal. Chem. 81, 174–183. (doi:10.1021/ac8016899) PubMed DOI