Notch stimulates growth by direct regulation of genes involved in the control of glycolysis and the tricarboxylic acid cycle

. 2016 Feb ; 6 (2) : 150155.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26887408

Grantová podpora
G0500926 Medical Research Council - United Kingdom
MR/L007177/1 Medical Research Council - United Kingdom

Glycolytic shift is a characteristic feature of rapidly proliferating cells, such as cells during development and during immune response or cancer cells, as well as of stem cells. It results in increased glycolysis uncoupled from mitochondrial respiration, also known as the Warburg effect. Notch signalling is active in contexts where cells undergo glycolytic shift. We decided to test whether metabolic genes are direct transcriptional targets of Notch signalling and whether upregulation of metabolic genes can help Notch to induce tissue growth under physiological conditions and in conditions of Notch-induced hyperplasia. We show that genes mediating cellular metabolic changes towards the Warburg effect are direct transcriptional targets of Notch signalling. They include genes encoding proteins involved in glucose uptake, glycolysis, lactate to pyruvate conversion and repression of the tricarboxylic acid cycle. The direct transcriptional upregulation of metabolic genes is PI3K/Akt independent and occurs not only in cells with overactivated Notch but also in cells with endogenous levels of Notch signalling and in vivo. Even a short pulse of Notch activity is able to elicit long-lasting metabolic changes resembling the Warburg effect. Loss of Notch signalling in Drosophila wing discs as well as in human microvascular cells leads to downregulation of glycolytic genes. Notch-driven tissue overgrowth can be rescued by downregulation of genes for glucose metabolism. Notch activity is able to support growth of wing during nutrient-deprivation conditions, independent of the growth of the rest of the body. Notch is active in situations that involve metabolic reprogramming, and the direct regulation of metabolic genes may be a common mechanism that helps Notch to exert its effects in target tissues.

Zobrazit více v PubMed

Krejci A. 2012. Metabolic sensors and their interplay with cell signalling and transcription. Biochem. Soc. Trans. 40, 311–323. (doi:10.1042/BST20110767) PubMed DOI

Wellen KE, Thompson CB. 2012. A two-way street: reciprocal regulation of metabolism and signalling. Nat. Rev. Mol. Cell Biol. 13, 270–276. (doi:10.1038/nrm3305) PubMed DOI

Dang L, et al. 2009. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744. (doi:10.1038/nature08617) PubMed DOI PMC

Warburg O. 1956. On the origin of cancer cells. Science 123, 309–314. (doi:10.1126/science.123.3191.309) PubMed DOI

Ward PS, Thompson CB. 2012. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21, 297–308. (doi:10.1016/j.ccr.2012.02.014) PubMed DOI PMC

Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC. 2011. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+T cell subsets. J. Immunol. 186, 3299–3303. (doi:10.4049/jimmunol.1003613) PubMed DOI PMC

De Bock K, et al. 2013. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154, 651–663. (doi:10.1016/j.cell.2013.06.037) PubMed DOI

Zhou W, et al. 2012. HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 31, 2103–2116. (doi:10.1038/emboj.2012.71) PubMed DOI PMC

Tennessen JM, Bertagnolli NM, Evans J, Sieber MH, Cox J, Thummel CS. 2014. Coordinated metabolic transitions during Drosophila embryogenesis and the onset of aerobic glycolysis. G3 (Bethesda) 4, 839–850. (doi:10.1534/g3.114.010652) PubMed DOI PMC

Tennessen JM, Baker KD, Lam G, Evans J, Thummel CS. 2011. The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metab. 13, 139–148. (doi:10.1016/j.cmet.2011.01.005) PubMed DOI PMC

Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH. 1997. Phosphorylation and activation of heart 6 -phosphofructo-2 -kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J. Biol. Chem. 272, 17 269–17 275. (doi:10.1074/jbc.272.28.17269) PubMed DOI

Agani F, Jiang BH. 2013. Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr. Cancer Drug Targets 13, 245–251. (doi:10.2174/1568009611313030003) PubMed DOI

Dibble CC, Manning BD. 2013. Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat. Cell Biol. 15, 555–564. (doi:10.1038/ncb2763) PubMed DOI PMC

Zhao Y, Butler EB, Tan M. 2013. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 4, e532 (doi:10.1038/cddis.2013.60) PubMed DOI PMC

Estella C, Baonza A. 2015. Cell proliferation control by Notch signalling during imaginal discs development in Drosophila. AIMS Genet. 2, 70–96. (doi:10.3934/genet.2015.1.70) DOI

Ntziachristos P, Lim JS, Sage J, Aifantis I. 2014. From fly wings to targeted cancer therapies: a centennial for Notch signaling. Cancer Cell 25, 318–334. (doi:10.1016/j.ccr.2014.02.018) PubMed DOI PMC

Palomero T, et al. 2006. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl Acad. Sci. USA 103, 18 261–18 266. (doi:10.1073/pnas.0606108103) PubMed DOI PMC

Wang H, et al. 2011. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc. Natl Acad. Sci. USA 108, 14 908–14 913. (doi:10.1073/pnas.1109023108) PubMed DOI PMC

Landor SK  et al. . 2011. Hypo- and hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms. Proc. Natl Acad. Sci. USA 108, 18 814–18 819. (doi:10.1073/pnas.1104943108) PubMed DOI PMC

Gustafsson MV, et al. 2005. Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628. (doi:10.1016/j.devcel.2005.09.010) PubMed DOI

Mukherjee T, Kim WS, Mandal L, Banerjee U. 2011. Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science 332, 1210–1213. (doi:10.1126/science.1199643) PubMed DOI PMC

Basak NP, Roy A, Banerjee S. 2014. Alteration of mitochondrial proteome due to activation of Notch1 signaling pathway. J. Biol. Chem. 289, 7320–7334. (doi:10.1074/jbc.M113.519405) PubMed DOI PMC

Saj A, et al. 2010. A combined ex vivo and in vivo RNAi screen for Notch regulators in Drosophila reveals an extensive Notch interaction network. Dev. Cell 18, 862–876. (doi:10.1016/j.devcel.2010.03.013) PubMed DOI

Djiane A, Krejci A, Bernard F, Fexova S, Millen K, Bray SJ. 2013. Dissecting the mechanisms of Notch induced hyperplasia. EMBO J. 32, 60–71. (doi:10.1038/emboj.2012.326) PubMed DOI PMC

Zhou D, Xue J, Lai JC, Schork NJ, White KP, Haddad GG. 2008. Mechanisms underlying hypoxia tolerance in Drosophila melanogaster: hairy as a metabolic switch. PLoS Genet. 4, e1000221 (doi:10.1371/journal.pgen.1000221) PubMed DOI PMC

Krejci A, Bray S. 2007. Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers. Genes Dev. 21, 1322–1327. (doi:10.1101/gad.424607) PubMed DOI PMC

Hooper KL, Parkhurst SM, Ish-Horowicz D. 1989. Spatial control of hairy protein expression during embryogenesis. Development 107, 489–504. PubMed

Joshi I, et al. 2009. Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood 113, 1689–1698. (doi:10.1182/blood-2008-03-147967) PubMed DOI PMC

Ling H, Sylvestre JR, Jolicoeur P. 2010. Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors. Oncogene 29, 4543–4554. (doi:10.1038/onc.2010.186) PubMed DOI

Cheng HT, Miner JH, Lin M, Tansey MG, Roth K, Kopan R. 2003. Gamma-secretase activity is dispensable for mesenchyme-to-epithelium transition but required for podocyte and proximal tubule formation in developing mouse kidney. Development 130, 5031–5042. (doi:10.1242/dev.00697) PubMed DOI

Housden BE, Li J, Bray SJ. 2014. Visualizing Notch signaling in vivo in Drosophila tissues. Methods Mol. Biol. 1187, 101–113. (doi:10.1007/978-1-4939-1139-4_8) PubMed DOI

Maekawa Y, Ishifune C, Tsukumo S, Hozumi K, Yagita H, Yasutomo K. 2015. Notch controls the survival of memory CD4+T cells by regulating glucose uptake. Nat. Med. 21, 55–61. (doi:10.1038/nm.3758) PubMed DOI

Takubo K, et al. 2013. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12, 49–61. (doi:10.1016/j.stem.2012.10.011) PubMed DOI PMC

Ochocki JD, Simon MC. 2013. Nutrient-sensing pathways and metabolic regulation in stem cells. J. Cell Biol. 203, 23–33. (doi:10.1083/jcb.201303110) PubMed DOI PMC

Koch U, Lehal R, Radtke F. 2013. Stem cells living with a Notch. Development 140, 689–704. (doi:10.1242/dev.080614) PubMed DOI

Bajgar A, Kucerova K, Jonatova L, Tomcala A, Schneedorferova I, Okrouhlik J, Dolezal T. 2015. Extracellular adenosine mediates a systemic metabolic switch during immune response. PLoS Biol. 13, e1002135 (doi:10.1371/journal.pbio.1002135) PubMed DOI PMC

Radtke F, MacDonald HR, Tacchini-Cottier F. 2013. Regulation of innate and adaptive immunity by Notch. Nat. Rev. Immunol. 13, 427–437. (doi:10.1038/nri3445) PubMed DOI

Delgado TC, Castro MM, Geraldes CF, Jones JG. 2004. Quantitation of erythrocyte pentose pathway flux with [2-13C] glucose and 1H NMR analysis of the lactate methyl signal. Magn. Reson. Med. 51, 1283–1286. (doi:10.1002/mrm.20096) PubMed DOI

Lee KM, Nam K, Oh S, Lim J, Lee T, Shin I. 2015. ECM1 promotes the Warburg effect through EGF-mediated activation of PKM2. Cell Signal. 27, 228–235. (doi:10.1016/j.cellsig.2014.11.004) PubMed DOI

Mondal S, et al. 2015. HSulf-1 deficiency dictates a metabolic reprograming of glycolysis and TCA cycle in ovarian cancer. Oncotarget. 6, 33 705–33 719. (doi:10.18632/oncotarget.5605) PubMed DOI PMC

Li Z, Li X, Wu S, Xue M, Chen W. 2014. Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci. 105, 951–955. (doi:10.1111/cas.12461) PubMed DOI PMC

Kim J, Sebring A, Esch JJ, Kraus ME, Vorwerk K, Magee J, Carroll SB. 1996. Integration of positional signals and regulation of wing formation and identity by Drosophila vestigial gene. Nature 382, 133–138. (doi:10.1038/382133a0) PubMed DOI

Krejci A, Bernard F, Housden BE, Collins S, Bray SJ. 2009. Direct response to Notch activation: signaling crosstalk and incoherent logic. Sci. Signal. 2, ra1. (doi:10.1126/scisignal.2000140) PubMed DOI

Zheng X, et al. 2008. Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc. Natl Acad. Sci. USA 105, 3368–3373. (doi:10.1073/pnas.0711591105) PubMed DOI PMC

Li J, Housden BE, Bray SJ. 2014. Notch signaling assays in Drosophila cultured cell lines. Methods Mol. Biol. 1187, 131–141. (doi:10.1007/978-1-4939-1139-4_10) PubMed DOI

Fehon RG, Kooh PJ, Rebay I, Regan CL, Xu T, Muskavitch MA, Artavanis-Tsakonas S. 1990. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61, 523–534. (doi:10.1016/0092-8674(90)90534-L) PubMed DOI

Ejsmont RK, Bogdanzaliewa M, Lipinski KA, Tomancak P. 2011. Production of fosmid genomic libraries optimized for liquid culture recombineering and cross-species transgenesis. Methods Mol. Biol. 772, 423–443. (doi:10.1007/978-1-61779-228-1_25) PubMed DOI

Bernard F, Krejci A, Housden B, Adryan B, Bray SJ. 2010. Specificity of Notch pathway activation: twist controls the transcriptional output in adult muscle progenitors. Development 137, 2633–2642. (doi:10.1242/dev.053181) PubMed DOI PMC

Rebay I, Fehon RG, Artavanis-Tsakonas S. 1993. Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell 74, 319–329. (doi:10.1016/0092-8674(93)90423-N) PubMed DOI

Furriols M, Bray S. 2000. Dissecting the mechanisms of suppressor of hairless function. Dev. Biol. 227, 520–532. (doi:10.1006/dbio.2000.9923) PubMed DOI

Sellick CA, Hansen R, Maqsood AR, Dunn WB, Stephens GM, Goodacre R, Dickson AJ. 2009. Effective quenching processes for physiologically valid metabolite profiling of suspension cultured mammalian cells. Anal. Chem. 81, 174–183. (doi:10.1021/ac8016899) PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...