Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense

. 2019 Oct 14 ; 8 () : . [epub] 20191014

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31609200

Grantová podpora
R35 GM119557 NIGMS NIH HHS - United States
Project 17-16406S Grantová Agentura České Republiky - International
Project 17-16406S Czech Science Foundation - International
R35 MIRA 1R35GM119557 NIGMS NIH HHS - United States

Macrophage-mediated phagocytosis and cytokine production represent the front lines of resistance to bacterial invaders. A key feature of this pro-inflammatory response in mammals is the complex remodeling of cellular metabolism towards aerobic glycolysis. Although the function of bactericidal macrophages is highly conserved, the metabolic remodeling of insect macrophages remains poorly understood. Here, we used adults of the fruit fly Drosophila melanogaster to investigate the metabolic changes that occur in macrophages during the acute and resolution phases of Streptococcus-induced sepsis. Our studies revealed that orthologs of Hypoxia inducible factor 1α (HIF1α) and Lactate dehydrogenase (LDH) are required for macrophage activation, their bactericidal function, and resistance to infection, thus documenting the conservation of this cellular response between insects and mammals. Further, we show that macrophages employing aerobic glycolysis induce changes in systemic metabolism that are necessary to meet the biosynthetic and energetic demands of their function and resistance to bacterial infection.

Zobrazit více v PubMed

Allison SJ, Knight JRP, Granchi C, Rani R, Minutolo F, Milner J, Phillips RM. Identification of LDH-A as a therapeutic target for cancer cell killing via (i) p53/NAD(H)-dependent and (ii) p53-independent pathways. Oncogenesis. 2014;3:102–111. doi: 10.1038/oncsis.2014.16. PubMed DOI PMC

Anderson RS, Holmes B, Good RA. In vitro bacteridical capacity of Blaberus craniifer hemocytes. Journal of Invertebrate Pathology. 1973a;22:127–135. doi: 10.1016/0022-2011(73)90021-9. PubMed DOI

Anderson RS, Holmes B, Good RA. Comparative biochemistry of phagocytizing insect hemocytes. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 1973b;46:595–602. doi: 10.1016/0305-0491(73)90099-0. PubMed DOI

Baardman J, Licht I, de Winther MP, Van den Bossche J. Metabolic-epigenetic crosstalk in macrophage activation. Epigenomics. 2015;7:1155–1164. doi: 10.2217/epi.15.71. PubMed DOI

Bailey P, Nathan J. Metabolic regulation of Hypoxia-Inducible transcription factors: the role of small molecule metabolites and iron. Biomedicines. 2018;6:60. doi: 10.3390/biomedicines6020060. PubMed DOI PMC

Bajgar A, Kucerova K, Jonatova L, Tomcala A, Schneedorferova I, Okrouhlik J, Dolezal T. Extracellular adenosine mediates a systemic metabolic switch during immune response. PLOS Biology. 2015;13:e1002135. doi: 10.1371/journal.pbio.1002135. PubMed DOI PMC

Bajgar A, Dolezal T. Extracellular Adenosine modulates host-pathogen interactions through regulation of systemic metabolism during immune response in Drosophila. PLOS Pathogens. 2018;14:e1007022. doi: 10.1371/journal.ppat.1007022. PubMed DOI PMC

Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 2013;4:597–603. doi: 10.4161/viru.25906. PubMed DOI PMC

Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology. Nature Reviews Immunology. 2014;14:796–810. doi: 10.1038/nri3763. PubMed DOI PMC

Chambers MC, Lightfield KL, Schneider DS. How the fly balances its ability to combat different pathogens. PLOS Pathogens. 2012;8:e1002970. doi: 10.1371/journal.ppat.1002970. PubMed DOI PMC

Cox BL, Mackie TR, Eliceiri KW. The sweet spot: fdg and other 2-carbon glucose analogs for multi-modal metabolic imaging of tumor metabolism. American Journal of Nuclear Medicine and Molecular Imaging. 2015;5:1–13. PubMed PMC

Davies LC, Taylor PR. Tissue-resident macrophages: then and now. Immunology. 2015;144:541–548. doi: 10.1111/imm.12451. PubMed DOI PMC

Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Critical Reviews in Biochemistry and Molecular Biology. 2014;49:1–15. doi: 10.3109/10409238.2013.838205. PubMed DOI PMC

Dolezal T. Adenosine: a selfish-immunity signal? Oncotarget. 2015;6:32307–32308. doi: 10.18632/oncotarget.4685. PubMed DOI PMC

Eichenlaub T, Villadsen R, Freitas FCP, Andrejeva D, Aldana BI, Nguyen HT, Petersen OW, Gorodkin J, Herranz H, Cohen SM. Warburg effect metabolism drives neoplasia in a Drosophila genetic model of epithelial Cancer. Current Biology. 2018;28:3220–3228. doi: 10.1016/j.cub.2018.08.035. PubMed DOI

Figueroa-Clarevega A, Bilder D. Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Developmental Cell. 2015;33:47–55. doi: 10.1016/j.devcel.2015.03.001. PubMed DOI PMC

Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circulation Research. 2018;122:877–902. doi: 10.1161/CIRCRESAHA.117.311401. PubMed DOI PMC

Freije WA, Mandal S, Banerjee U. Expression profiling of attenuated mitochondrial function identifies retrograde signals in Drosophila. G3: Genes|Genomes|Genetics. 2012;2:843–851. doi: 10.1534/g3.112.002584. PubMed DOI PMC

Galván-Peña S, O'Neill LA. Metabolic reprograming in macrophage polarization. Frontiers in Immunology. 2014;5:420. doi: 10.3389/fimmu.2014.00420. PubMed DOI PMC

Geeraerts X, Bolli E, Fendt SM, Van Ginderachter JA. Macrophage metabolism as therapeutic target for Cancer, atherosclerosis, and obesity. Frontiers in Immunology. 2017;8:289. doi: 10.3389/fimmu.2017.00289. PubMed DOI PMC

German DC, Bloch CA, Kredich NM. Measurements of S-adenosylmethionine and L-homocysteine metabolism in cultured human lymphoid cells. The Journal of Biological Chemistry. 1983;258:10997–11003. PubMed

Govind S. Innate immunity in Drosophila: pathogens and pathways. Insect Science. 2008;15:29–43. doi: 10.1111/j.1744-7917.2008.00185.x. PubMed DOI PMC

Herranz H, Cohen S. Drosophila as a model to study the link between metabolism and Cancer. Journal of Developmental Biology. 2017;5:15. doi: 10.3390/jdb5040015. PubMed DOI PMC

Imtiyaz HZ, Simon MC. Hypoxia-inducible factors as essential regulators of inflammation. Current Topics in Microbiology and Immunology. 2010;345:105–120. doi: 10.1007/82_2010_74. PubMed DOI PMC

Iommarini L, Porcelli AM, Gasparre G, Kurelac I. Non-Canonical mechanisms regulating Hypoxia-Inducible factor 1 alpha in Cancer. Frontiers in Oncology. 2017;7:1–9. doi: 10.3389/fonc.2017.00286. PubMed DOI PMC

Irving P, Ubeda J-M, Doucet D, Troxler L, Lagueux M, Zachary D, Hoffmann JA, Hetru C, Meister M. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cellular Microbiology. 2005;7:335–350. doi: 10.1111/j.1462-5822.2004.00462.x. PubMed DOI

Jeong HJ, Chung HS, Lee BR, Kim SJ, Yoo SJ, Hong SH, Kim HM. Expression of proinflammatory cytokines via HIF-1alpha and NF-kappaB activation on desferrioxamine-stimulated HMC-1 cells. Biochemical and Biophysical Research Communications. 2003;306:805–811. doi: 10.1016/S0006-291X(03)01073-8. PubMed DOI

Johansson KC, Metzendorf C, Söderhäll K. Microarray analysis of immune challenged Drosophila hemocytes. Experimental Cell Research. 2005;305:145–155. doi: 10.1016/j.yexcr.2004.12.018. PubMed DOI

Jung Y, Isaacs JS, Lee S, Trepel J, Liu ZG, Neckers L. Hypoxia-inducible factor induction by tumour necrosis factor in Normoxic cells requires receptor-interacting protein-dependent nuclear factor kappa B activation. Biochemical Journal. 2003;370:1011–1017. doi: 10.1042/bj20021279. PubMed DOI PMC

Jung SH, Evans CJ, Uemura C, Banerjee U. The Drosophila lymph gland as a developmental model of hematopoiesis. Development. 2005;132:2521–2533. doi: 10.1242/dev.01837. PubMed DOI

Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–650. doi: 10.1016/j.immuni.2011.05.006. PubMed DOI

Kim MY, Lee JE, Kim LK, Kim T. Epigenetic memory in gene regulation and immune response. BMB Reports. 2019;52:127–132. doi: 10.5483/BMBRep.2019.52.2.257. PubMed DOI PMC

Koivunen P, Hirsilä M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J. Inhibition of Hypoxia-inducible factor (HIF) Hydroxylases by citric acid cycle intermediates. Journal of Biological Chemistry. 2007;282:4524–4532. doi: 10.1074/jbc.M610415200. PubMed DOI

Kwon Y, Song W, Droujinine IA, Hu Y, Asara JM, Perrimon N. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Developmental Cell. 2015;33:36–46. doi: 10.1016/j.devcel.2015.02.012. PubMed DOI PMC

Langston PK, Shibata M, Horng T. Metabolism supports macrophage activation. Frontiers in Immunology. 2017;8:1–7. doi: 10.3389/fimmu.2017.00061. PubMed DOI PMC

Lavista-Llanos S, Centanin L, Irisarri M, Russo DM, Gleadle JM, Bocca SN, Muzzopappa M, Ratcliffe PJ, Wappner P. Control of the hypoxic response in Drosophila Melanogaster by the basic helix-loop-helix PAS protein similar. Molecular and Cellular Biology. 2002;22:6842–6853. doi: 10.1128/MCB.22.19.6842-6853.2002. PubMed DOI PMC

Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86:973–983. doi: 10.1016/S0092-8674(00)80172-5. PubMed DOI

Li Y, Padmanabha D, Gentile LB, Dumur CI, Beckstead RB, Baker KD. HIF- and non-HIF-regulated hypoxic responses require the estrogen-related receptor in Drosophila Melanogaster. PLOS Genetics. 2013;9:e1003230. doi: 10.1371/journal.pgen.1003230. PubMed DOI PMC

Liberti MV, Locasale JW. The warburg effect: how does it benefit Cancer cells? Trends in Biochemical Sciences. 2016;41:211–218. doi: 10.1016/j.tibs.2015.12.001. PubMed DOI PMC

Lim JJ, Grinstein S, Roth Z. Diversity and versatility of phagocytosis: roles in innate immunity, tissue remodeling, and homeostasis. Frontiers in Cellular and Infection Microbiology. 2017;7:1–12. doi: 10.3389/fcimb.2017.00191. PubMed DOI PMC

Liu G, Roy J, Johnson EA. Identification and function of hypoxia-response genes in Drosophila melanogaster. Physiological Genomics. 2006;25:134–141. doi: 10.1152/physiolgenomics.00262.2005. PubMed DOI

Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Reports. 2014;6:1–13. doi: 10.12703/P6-13. PubMed DOI PMC

Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. The Journal of Immunology. 2000;164:6166–6173. doi: 10.4049/jimmunol.164.12.6166. PubMed DOI

Milutinović B, Kurtz J. Immune memory in invertebrates. Seminars in Immunology. 2016;28:328–342. doi: 10.1016/j.smim.2016.05.004. PubMed DOI

Miyazawa H, Aulehla A. Revisiting the role of metabolism during development. Development. 2018;145:dev131110. doi: 10.1242/dev.131110. PubMed DOI

Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature Reviews Immunology. 2008;8:958–969. doi: 10.1038/nri2448. PubMed DOI PMC

Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, O'Neill LA, Xavier RJ. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352:aaf1098. doi: 10.1126/science.aaf1098. PubMed DOI PMC

Newsholme P, Curi R, Gordon S, Newsholme EA. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochemical Journal. 1986;239:121–125. doi: 10.1042/bj2390121. PubMed DOI PMC

Nonnenmacher Y, Hiller K. Biochemistry of proinflammatory macrophage activation. Cellular and Molecular Life Sciences. 2018;75:2093–2109. doi: 10.1007/s00018-018-2784-1. PubMed DOI PMC

O'Neill LA, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. The Journal of Experimental Medicine. 2016;213:15–23. doi: 10.1084/jem.20151570. PubMed DOI PMC

Olenchock BA, Rathmell JC, Vander Heiden MG. Biochemical underpinnings of immune cell metabolic phenotypes. Immunity. 2017;46:703–713. doi: 10.1016/j.immuni.2017.04.013. PubMed DOI PMC

Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38:633–643. doi: 10.1016/j.immuni.2013.04.005. PubMed DOI PMC

Peyssonnaux C, Cejudo-Martin P, Doedens A, Zinkernagel AS, Johnson RS, Nizet V. Cutting edge: essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced Sepsis. The Journal of Immunology. 2007;178:7516–7519. doi: 10.4049/jimmunol.178.12.7516. PubMed DOI

Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS. A specific primed immune response in Drosophila is dependent on phagocytes. PLOS Pathogens. 2007;3:e26. doi: 10.1371/journal.ppat.0030026. PubMed DOI PMC

Romero NM, Irisarri M, Roth P, Cauerhff A, Samakovlis C, Wappner P. Regulation of the Drosophila hypoxia-inducible factor alpha sima by CRM1-dependent nuclear export. Molecular and Cellular Biology. 2008;28:3410–3423. doi: 10.1128/MCB.01027-07. PubMed DOI PMC

Sears HC, Kennedy CJ, Garrity PA. Macrophage-mediated corpse engulfment is required for normal Drosophila CNS morphogenesis. Development. 2003;130:3557–3565. doi: 10.1242/dev.00586. PubMed DOI

Siegert I, Schödel J, Nairz M, Schatz V, Dettmer K, Dick C, Kalucka J, Franke K, Ehrenschwender M, Schley G, Beneke A, Sutter J, Moll M, Hellerbrand C, Wielockx B, Katschinski DM, Lang R, Galy B, Hentze MW, Koivunen P, Oefner PJ, Bogdan C, Weiss G, Willam C, Jantsch J. Ferritin-Mediated iron sequestration stabilizes Hypoxia-Inducible Factor-1α upon LPS activation in the presence of ample oxygen. Cell Reports. 2015;13:2048–2055. doi: 10.1016/j.celrep.2015.11.005. PubMed DOI

Straub RH. Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases. Arthritis Research & Therapy. 2014;16:S4. doi: 10.1186/ar4688. PubMed DOI PMC

Valanne S, Wang JH, Rämet M. The Drosophila toll signaling pathway. Journal of Immunology. 2011;186:649–656. doi: 10.4049/jimmunol.1002302. PubMed DOI

van Uden P, Kenneth NS, Webster R, Müller HA, Mudie S, Rocha S. Evolutionary conserved regulation of HIF-1β by NF-κB. PLOS Genetics. 2011;7:e1001285. doi: 10.1371/journal.pgen.1001285. PubMed DOI PMC

Wang CW, Purkayastha A, Jones KT, Thaker SK, Banerjee U. In vivo genetic dissection of tumor growth and the warburg effect. eLife. 2016;5:e18126. doi: 10.7554/eLife.18126. PubMed DOI PMC

Warburg O, Wind F, Negelein E. The metabolism of tumors in the body [English reprint] The Journal of General Physiology. 1927;8:519–530. doi: 10.1085/jgp.8.6.519. PubMed DOI PMC

Warburg O. On the origin of Cancer cells. Science. 1956;123:309–314. doi: 10.1126/science.123.3191.309. PubMed DOI

Webster KA. Evolution of the coordinate regulation of glycolytic enzyme genes by hypoxia. Journal of Experimental Biology. 2003;206:2911–2922. doi: 10.1242/jeb.00516. PubMed DOI

Williams NC, O'Neill LAJ. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Frontiers in Immunology. 2018;9:141. doi: 10.3389/fimmu.2018.00141. PubMed DOI PMC

Wood W, Martin P. Macrophage functions in tissue patterning and disease: new insights from the fly. Developmental Cell. 2017;40:221–233. doi: 10.1016/j.devcel.2017.01.001. PubMed DOI PMC

Worku Y, Newby AC. The mechanism of adenosine production in rat polymorphonuclear leucocytes. Biochemical Journal. 1983;214:325–330. doi: 10.1042/bj2140325. PubMed DOI PMC

Wu QL, Fu YF, Zhou WL, Wang JX, Feng YH, Liu J, Xu JY, He PL, Zhou R, Tang W, Wang GF, Zhou Y, Yang YF, Ding J, Li XY, Chen XR, Yuan C, Lawson BR, Zuo JP. Inhibition of S -Adenosyl-l-homocysteine hydrolase induces immunosuppression. The Journal of Pharmacology and Experimental Therapeutics. 2005;313:705–711. doi: 10.1124/jpet.104.080416. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...