Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R35 GM119557
NIGMS NIH HHS - United States
Project 17-16406S
Grantová Agentura České Republiky - International
Project 17-16406S
Czech Science Foundation - International
R35 MIRA 1R35GM119557
NIGMS NIH HHS - United States
PubMed
31609200
PubMed Central
PMC6867711
DOI
10.7554/elife.50414
PII: 50414
Knihovny.cz E-zdroje
- Klíčová slova
- D. melanogaster, HIF1α, Warburg effect, aerobic glycolysis, bacterial infection, immunology, immunometabolism, inflammation, polarization of macrophages,
- MeSH
- aerobióza MeSH
- Drosophila imunologie MeSH
- glykolýza * MeSH
- makrofágy imunologie metabolismus MeSH
- Streptococcus imunologie MeSH
- streptokokové infekce imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Macrophage-mediated phagocytosis and cytokine production represent the front lines of resistance to bacterial invaders. A key feature of this pro-inflammatory response in mammals is the complex remodeling of cellular metabolism towards aerobic glycolysis. Although the function of bactericidal macrophages is highly conserved, the metabolic remodeling of insect macrophages remains poorly understood. Here, we used adults of the fruit fly Drosophila melanogaster to investigate the metabolic changes that occur in macrophages during the acute and resolution phases of Streptococcus-induced sepsis. Our studies revealed that orthologs of Hypoxia inducible factor 1α (HIF1α) and Lactate dehydrogenase (LDH) are required for macrophage activation, their bactericidal function, and resistance to infection, thus documenting the conservation of this cellular response between insects and mammals. Further, we show that macrophages employing aerobic glycolysis induce changes in systemic metabolism that are necessary to meet the biosynthetic and energetic demands of their function and resistance to bacterial infection.
Department of Biology Indiana University Bloomington United States
Department of Medical Biology University of South Bohemia Ceske Budejovice Czech Republic
Institute of Entomology Biology Centre CAS Ceske Budejovice Czech Republic
Institute of Parasitology Biology Centre CAS Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Allison SJ, Knight JRP, Granchi C, Rani R, Minutolo F, Milner J, Phillips RM. Identification of LDH-A as a therapeutic target for cancer cell killing via (i) p53/NAD(H)-dependent and (ii) p53-independent pathways. Oncogenesis. 2014;3:102–111. doi: 10.1038/oncsis.2014.16. PubMed DOI PMC
Anderson RS, Holmes B, Good RA. In vitro bacteridical capacity of Blaberus craniifer hemocytes. Journal of Invertebrate Pathology. 1973a;22:127–135. doi: 10.1016/0022-2011(73)90021-9. PubMed DOI
Anderson RS, Holmes B, Good RA. Comparative biochemistry of phagocytizing insect hemocytes. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 1973b;46:595–602. doi: 10.1016/0305-0491(73)90099-0. PubMed DOI
Baardman J, Licht I, de Winther MP, Van den Bossche J. Metabolic-epigenetic crosstalk in macrophage activation. Epigenomics. 2015;7:1155–1164. doi: 10.2217/epi.15.71. PubMed DOI
Bailey P, Nathan J. Metabolic regulation of Hypoxia-Inducible transcription factors: the role of small molecule metabolites and iron. Biomedicines. 2018;6:60. doi: 10.3390/biomedicines6020060. PubMed DOI PMC
Bajgar A, Kucerova K, Jonatova L, Tomcala A, Schneedorferova I, Okrouhlik J, Dolezal T. Extracellular adenosine mediates a systemic metabolic switch during immune response. PLOS Biology. 2015;13:e1002135. doi: 10.1371/journal.pbio.1002135. PubMed DOI PMC
Bajgar A, Dolezal T. Extracellular Adenosine modulates host-pathogen interactions through regulation of systemic metabolism during immune response in Drosophila. PLOS Pathogens. 2018;14:e1007022. doi: 10.1371/journal.ppat.1007022. PubMed DOI PMC
Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 2013;4:597–603. doi: 10.4161/viru.25906. PubMed DOI PMC
Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology. Nature Reviews Immunology. 2014;14:796–810. doi: 10.1038/nri3763. PubMed DOI PMC
Chambers MC, Lightfield KL, Schneider DS. How the fly balances its ability to combat different pathogens. PLOS Pathogens. 2012;8:e1002970. doi: 10.1371/journal.ppat.1002970. PubMed DOI PMC
Cox BL, Mackie TR, Eliceiri KW. The sweet spot: fdg and other 2-carbon glucose analogs for multi-modal metabolic imaging of tumor metabolism. American Journal of Nuclear Medicine and Molecular Imaging. 2015;5:1–13. PubMed PMC
Davies LC, Taylor PR. Tissue-resident macrophages: then and now. Immunology. 2015;144:541–548. doi: 10.1111/imm.12451. PubMed DOI PMC
Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Critical Reviews in Biochemistry and Molecular Biology. 2014;49:1–15. doi: 10.3109/10409238.2013.838205. PubMed DOI PMC
Dolezal T. Adenosine: a selfish-immunity signal? Oncotarget. 2015;6:32307–32308. doi: 10.18632/oncotarget.4685. PubMed DOI PMC
Eichenlaub T, Villadsen R, Freitas FCP, Andrejeva D, Aldana BI, Nguyen HT, Petersen OW, Gorodkin J, Herranz H, Cohen SM. Warburg effect metabolism drives neoplasia in a Drosophila genetic model of epithelial Cancer. Current Biology. 2018;28:3220–3228. doi: 10.1016/j.cub.2018.08.035. PubMed DOI
Figueroa-Clarevega A, Bilder D. Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Developmental Cell. 2015;33:47–55. doi: 10.1016/j.devcel.2015.03.001. PubMed DOI PMC
Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circulation Research. 2018;122:877–902. doi: 10.1161/CIRCRESAHA.117.311401. PubMed DOI PMC
Freije WA, Mandal S, Banerjee U. Expression profiling of attenuated mitochondrial function identifies retrograde signals in Drosophila. G3: Genes|Genomes|Genetics. 2012;2:843–851. doi: 10.1534/g3.112.002584. PubMed DOI PMC
Galván-Peña S, O'Neill LA. Metabolic reprograming in macrophage polarization. Frontiers in Immunology. 2014;5:420. doi: 10.3389/fimmu.2014.00420. PubMed DOI PMC
Geeraerts X, Bolli E, Fendt SM, Van Ginderachter JA. Macrophage metabolism as therapeutic target for Cancer, atherosclerosis, and obesity. Frontiers in Immunology. 2017;8:289. doi: 10.3389/fimmu.2017.00289. PubMed DOI PMC
German DC, Bloch CA, Kredich NM. Measurements of S-adenosylmethionine and L-homocysteine metabolism in cultured human lymphoid cells. The Journal of Biological Chemistry. 1983;258:10997–11003. PubMed
Govind S. Innate immunity in Drosophila: pathogens and pathways. Insect Science. 2008;15:29–43. doi: 10.1111/j.1744-7917.2008.00185.x. PubMed DOI PMC
Herranz H, Cohen S. Drosophila as a model to study the link between metabolism and Cancer. Journal of Developmental Biology. 2017;5:15. doi: 10.3390/jdb5040015. PubMed DOI PMC
Imtiyaz HZ, Simon MC. Hypoxia-inducible factors as essential regulators of inflammation. Current Topics in Microbiology and Immunology. 2010;345:105–120. doi: 10.1007/82_2010_74. PubMed DOI PMC
Iommarini L, Porcelli AM, Gasparre G, Kurelac I. Non-Canonical mechanisms regulating Hypoxia-Inducible factor 1 alpha in Cancer. Frontiers in Oncology. 2017;7:1–9. doi: 10.3389/fonc.2017.00286. PubMed DOI PMC
Irving P, Ubeda J-M, Doucet D, Troxler L, Lagueux M, Zachary D, Hoffmann JA, Hetru C, Meister M. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cellular Microbiology. 2005;7:335–350. doi: 10.1111/j.1462-5822.2004.00462.x. PubMed DOI
Jeong HJ, Chung HS, Lee BR, Kim SJ, Yoo SJ, Hong SH, Kim HM. Expression of proinflammatory cytokines via HIF-1alpha and NF-kappaB activation on desferrioxamine-stimulated HMC-1 cells. Biochemical and Biophysical Research Communications. 2003;306:805–811. doi: 10.1016/S0006-291X(03)01073-8. PubMed DOI
Johansson KC, Metzendorf C, Söderhäll K. Microarray analysis of immune challenged Drosophila hemocytes. Experimental Cell Research. 2005;305:145–155. doi: 10.1016/j.yexcr.2004.12.018. PubMed DOI
Jung Y, Isaacs JS, Lee S, Trepel J, Liu ZG, Neckers L. Hypoxia-inducible factor induction by tumour necrosis factor in Normoxic cells requires receptor-interacting protein-dependent nuclear factor kappa B activation. Biochemical Journal. 2003;370:1011–1017. doi: 10.1042/bj20021279. PubMed DOI PMC
Jung SH, Evans CJ, Uemura C, Banerjee U. The Drosophila lymph gland as a developmental model of hematopoiesis. Development. 2005;132:2521–2533. doi: 10.1242/dev.01837. PubMed DOI
Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–650. doi: 10.1016/j.immuni.2011.05.006. PubMed DOI
Kim MY, Lee JE, Kim LK, Kim T. Epigenetic memory in gene regulation and immune response. BMB Reports. 2019;52:127–132. doi: 10.5483/BMBRep.2019.52.2.257. PubMed DOI PMC
Koivunen P, Hirsilä M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J. Inhibition of Hypoxia-inducible factor (HIF) Hydroxylases by citric acid cycle intermediates. Journal of Biological Chemistry. 2007;282:4524–4532. doi: 10.1074/jbc.M610415200. PubMed DOI
Kwon Y, Song W, Droujinine IA, Hu Y, Asara JM, Perrimon N. Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Developmental Cell. 2015;33:36–46. doi: 10.1016/j.devcel.2015.02.012. PubMed DOI PMC
Langston PK, Shibata M, Horng T. Metabolism supports macrophage activation. Frontiers in Immunology. 2017;8:1–7. doi: 10.3389/fimmu.2017.00061. PubMed DOI PMC
Lavista-Llanos S, Centanin L, Irisarri M, Russo DM, Gleadle JM, Bocca SN, Muzzopappa M, Ratcliffe PJ, Wappner P. Control of the hypoxic response in Drosophila Melanogaster by the basic helix-loop-helix PAS protein similar. Molecular and Cellular Biology. 2002;22:6842–6853. doi: 10.1128/MCB.22.19.6842-6853.2002. PubMed DOI PMC
Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86:973–983. doi: 10.1016/S0092-8674(00)80172-5. PubMed DOI
Li Y, Padmanabha D, Gentile LB, Dumur CI, Beckstead RB, Baker KD. HIF- and non-HIF-regulated hypoxic responses require the estrogen-related receptor in Drosophila Melanogaster. PLOS Genetics. 2013;9:e1003230. doi: 10.1371/journal.pgen.1003230. PubMed DOI PMC
Liberti MV, Locasale JW. The warburg effect: how does it benefit Cancer cells? Trends in Biochemical Sciences. 2016;41:211–218. doi: 10.1016/j.tibs.2015.12.001. PubMed DOI PMC
Lim JJ, Grinstein S, Roth Z. Diversity and versatility of phagocytosis: roles in innate immunity, tissue remodeling, and homeostasis. Frontiers in Cellular and Infection Microbiology. 2017;7:1–12. doi: 10.3389/fcimb.2017.00191. PubMed DOI PMC
Liu G, Roy J, Johnson EA. Identification and function of hypoxia-response genes in Drosophila melanogaster. Physiological Genomics. 2006;25:134–141. doi: 10.1152/physiolgenomics.00262.2005. PubMed DOI
Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Reports. 2014;6:1–13. doi: 10.12703/P6-13. PubMed DOI PMC
Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. The Journal of Immunology. 2000;164:6166–6173. doi: 10.4049/jimmunol.164.12.6166. PubMed DOI
Milutinović B, Kurtz J. Immune memory in invertebrates. Seminars in Immunology. 2016;28:328–342. doi: 10.1016/j.smim.2016.05.004. PubMed DOI
Miyazawa H, Aulehla A. Revisiting the role of metabolism during development. Development. 2018;145:dev131110. doi: 10.1242/dev.131110. PubMed DOI
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nature Reviews Immunology. 2008;8:958–969. doi: 10.1038/nri2448. PubMed DOI PMC
Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, O'Neill LA, Xavier RJ. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352:aaf1098. doi: 10.1126/science.aaf1098. PubMed DOI PMC
Newsholme P, Curi R, Gordon S, Newsholme EA. Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochemical Journal. 1986;239:121–125. doi: 10.1042/bj2390121. PubMed DOI PMC
Nonnenmacher Y, Hiller K. Biochemistry of proinflammatory macrophage activation. Cellular and Molecular Life Sciences. 2018;75:2093–2109. doi: 10.1007/s00018-018-2784-1. PubMed DOI PMC
O'Neill LA, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. The Journal of Experimental Medicine. 2016;213:15–23. doi: 10.1084/jem.20151570. PubMed DOI PMC
Olenchock BA, Rathmell JC, Vander Heiden MG. Biochemical underpinnings of immune cell metabolic phenotypes. Immunity. 2017;46:703–713. doi: 10.1016/j.immuni.2017.04.013. PubMed DOI PMC
Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38:633–643. doi: 10.1016/j.immuni.2013.04.005. PubMed DOI PMC
Peyssonnaux C, Cejudo-Martin P, Doedens A, Zinkernagel AS, Johnson RS, Nizet V. Cutting edge: essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced Sepsis. The Journal of Immunology. 2007;178:7516–7519. doi: 10.4049/jimmunol.178.12.7516. PubMed DOI
Pham LN, Dionne MS, Shirasu-Hiza M, Schneider DS. A specific primed immune response in Drosophila is dependent on phagocytes. PLOS Pathogens. 2007;3:e26. doi: 10.1371/journal.ppat.0030026. PubMed DOI PMC
Romero NM, Irisarri M, Roth P, Cauerhff A, Samakovlis C, Wappner P. Regulation of the Drosophila hypoxia-inducible factor alpha sima by CRM1-dependent nuclear export. Molecular and Cellular Biology. 2008;28:3410–3423. doi: 10.1128/MCB.01027-07. PubMed DOI PMC
Sears HC, Kennedy CJ, Garrity PA. Macrophage-mediated corpse engulfment is required for normal Drosophila CNS morphogenesis. Development. 2003;130:3557–3565. doi: 10.1242/dev.00586. PubMed DOI
Siegert I, Schödel J, Nairz M, Schatz V, Dettmer K, Dick C, Kalucka J, Franke K, Ehrenschwender M, Schley G, Beneke A, Sutter J, Moll M, Hellerbrand C, Wielockx B, Katschinski DM, Lang R, Galy B, Hentze MW, Koivunen P, Oefner PJ, Bogdan C, Weiss G, Willam C, Jantsch J. Ferritin-Mediated iron sequestration stabilizes Hypoxia-Inducible Factor-1α upon LPS activation in the presence of ample oxygen. Cell Reports. 2015;13:2048–2055. doi: 10.1016/j.celrep.2015.11.005. PubMed DOI
Straub RH. Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases. Arthritis Research & Therapy. 2014;16:S4. doi: 10.1186/ar4688. PubMed DOI PMC
Valanne S, Wang JH, Rämet M. The Drosophila toll signaling pathway. Journal of Immunology. 2011;186:649–656. doi: 10.4049/jimmunol.1002302. PubMed DOI
van Uden P, Kenneth NS, Webster R, Müller HA, Mudie S, Rocha S. Evolutionary conserved regulation of HIF-1β by NF-κB. PLOS Genetics. 2011;7:e1001285. doi: 10.1371/journal.pgen.1001285. PubMed DOI PMC
Wang CW, Purkayastha A, Jones KT, Thaker SK, Banerjee U. In vivo genetic dissection of tumor growth and the warburg effect. eLife. 2016;5:e18126. doi: 10.7554/eLife.18126. PubMed DOI PMC
Warburg O, Wind F, Negelein E. The metabolism of tumors in the body [English reprint] The Journal of General Physiology. 1927;8:519–530. doi: 10.1085/jgp.8.6.519. PubMed DOI PMC
Warburg O. On the origin of Cancer cells. Science. 1956;123:309–314. doi: 10.1126/science.123.3191.309. PubMed DOI
Webster KA. Evolution of the coordinate regulation of glycolytic enzyme genes by hypoxia. Journal of Experimental Biology. 2003;206:2911–2922. doi: 10.1242/jeb.00516. PubMed DOI
Williams NC, O'Neill LAJ. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Frontiers in Immunology. 2018;9:141. doi: 10.3389/fimmu.2018.00141. PubMed DOI PMC
Wood W, Martin P. Macrophage functions in tissue patterning and disease: new insights from the fly. Developmental Cell. 2017;40:221–233. doi: 10.1016/j.devcel.2017.01.001. PubMed DOI PMC
Worku Y, Newby AC. The mechanism of adenosine production in rat polymorphonuclear leucocytes. Biochemical Journal. 1983;214:325–330. doi: 10.1042/bj2140325. PubMed DOI PMC
Wu QL, Fu YF, Zhou WL, Wang JX, Feng YH, Liu J, Xu JY, He PL, Zhou R, Tang W, Wang GF, Zhou Y, Yang YF, Ding J, Li XY, Chen XR, Yuan C, Lawson BR, Zuo JP. Inhibition of S -Adenosyl-l-homocysteine hydrolase induces immunosuppression. The Journal of Pharmacology and Experimental Therapeutics. 2005;313:705–711. doi: 10.1124/jpet.104.080416. PubMed DOI
Current insights into insect immune memory
On the origin of the functional versatility of macrophages
Polarization of Macrophages in Insects: Opening Gates for Immuno-Metabolic Research