Macrophage-derived insulin antagonist ImpL2 induces lipoprotein mobilization upon bacterial infection
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20-14030S
The Czech Science Foundation (GACR)
23-06133S
The Czech Science Foundation (GACR)
20-09103S
The Czech Science Foundation (GACR)
050/2019/P
USB Grant Agency
PubMed
37807855
PubMed Central
PMC10690471
DOI
10.15252/embj.2023114086
Knihovny.cz E-zdroje
- Klíčová slova
- Drosophila, ImpL2, insulin resistance, lipoproteins, macrophage polarization,
- MeSH
- antagonisté inzulinu metabolismus farmakologie MeSH
- bakteriální infekce * metabolismus MeSH
- Drosophila metabolismus MeSH
- inzulin metabolismus MeSH
- inzulinová rezistence * MeSH
- makrofágy metabolismus MeSH
- proteiny Drosophily * metabolismus MeSH
- proteiny vázající IGF metabolismus MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antagonisté inzulinu MeSH
- ImpL2 protein, Drosophila MeSH Prohlížeč
- inzulin MeSH
- proteiny Drosophily * MeSH
- proteiny vázající IGF MeSH
The immune response is an energy-demanding process that must be coordinated with systemic metabolic changes redirecting nutrients from stores to the immune system. Although this interplay is fundamental for the function of the immune system, the underlying mechanisms remain elusive. Our data show that the pro-inflammatory polarization of Drosophila macrophages is coupled to the production of the insulin antagonist ImpL2 through the activity of the transcription factor HIF1α. ImpL2 production, reflecting nutritional demands of activated macrophages, subsequently impairs insulin signaling in the fat body, thereby triggering FOXO-driven mobilization of lipoproteins. This metabolic adaptation is fundamental for the function of the immune system and an individual's resistance to infection. We demonstrated that analogically to Drosophila, mammalian immune-activated macrophages produce ImpL2 homolog IGFBP7 in a HIF1α-dependent manner and that enhanced IGFBP7 production by these cells induces mobilization of lipoproteins from hepatocytes. Hence, the production of ImpL2/IGFBP7 by macrophages represents an evolutionarily conserved mechanism by which macrophages alleviate insulin signaling in the central metabolic organ to secure nutrients necessary for their function upon bacterial infection.
Biology Centre CAS Institute of Parasitology Ceske Budejovice Czech Republic
Department of Medicine Integrated Cardio Metabolic Center Karolinska Institutet Huddinge Sweden
Dr Margarete Fischer Bosch Institute of Clinical Pharmacology Stuttgart Germany
Institute of Entomology Biology Centre CAS Ceske Budejovice Czech Republic
Institute of Molecular Biology University of Oregon Oregon City OR USA
Zobrazit více v PubMed
Akhtar DH, Iqbal U, Vazquez‐Montesino LM, Dennis BB, Ahmed A (2019) Pathogenesis of insulin resistance and atherogenic dyslipidemia in nonalcoholic fatty liver disease. J Clin Transl Hepatol 7: 1–9 PubMed PMC
Al‐Mansoori L, Al‐Jaber H, Prince MS, Elrayess MA (2022) Role of inflammatory cytokines, growth factors and adipokines in adipogenesis and insulin resistance. Inflammation 45: 31–44 PubMed PMC
Arrese EL, Canavoso LE, Jouni ZE, Pennington JE, Tsuchida K, Wells MA (2001) Lipid storage and mobilization in insects: current status and future directions. Insect Biochem Mol Biol 31: 7–17 PubMed
Bajgar A, Dolezal T (2018) Extracellular adenosine modulates host‐pathogen interactions through regulation of systemic metabolism during immune response in Drosophila. PLoS Pathog 14: e1007022 PubMed PMC
Bayley JS, Sørensen JG, Moos M, Koštál V, Overgaard J (2020) Cold acclimation increases depolarization resistance and tolerance in muscle fibers from a chill‐susceptible insect, Locusta migratoria . Am J Physiol Integr Comp Physiol 319: R439–R447 PubMed
Bell CC, Lauschke VM, Vorrink SU, Palmgren H, Duffin R, Andersson TB, Ingelman‐Sundberg M (2017) Transcriptional, functional, and mechanistic comparisons of stem cell–derived hepatocytes, HepaRG cells, and three‐dimensional human hepatocyte spheroids as predictive in vitro systems for drug‐induced liver injury. Drug Metab Dispos 45: 419–429 PubMed PMC
Brankatschk M, Dunst S, Nemetschke L, Eaton S (2014) Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling. Elife 3: e02862 PubMed PMC
Britton JS, Lockwood WK, Li L, Cohen SM, Edgar BA (2002) Drosophila's insulin/PI3‐kinase pathway coordinates cellular metabolism with nutritional conditions. Dev Cell 2: 239–249 PubMed
Canavoso LE, Yun HK, Jouni ZE, Wells MA (2004) Lipid transfer particle mediates the delivery of diacylglycerol from lipophorin to fat body in larval Manduca sexta . J Lipid Res 45: 456–465 PubMed
Chi H (2022) Immunometabolism at the intersection of metabolic signaling, cell fate, and systems immunology. Cell Mol Immunol 19: 299–302 PubMed PMC
Chow A, Brown BD, Merad M (2011) Studying the mononuclear phagocyte system in the molecular age. Nat Rev Immunol 11: 788–798 PubMed
Corcoran SE, O'Neill LAJ (2016) HIF1α and metabolic reprogramming in inflammation. J Clin Invest 126: 3699–3707 PubMed PMC
DiAngelo JR, Bland ML, Bambina S, Cherry S, Birnbaum MJ (2009) The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proc Natl Acad Sci USA 106: 20853–20858 PubMed PMC
Dionne MS, Schneider DS (2008) Models of infectious diseases in the fruit fly Drosophila melanogaster . Dis Model Mech 1: 43–49 PubMed PMC
Figueroa‐Clarevega A, Bilder D (2015) Malignant Drosophila tumors interrupt insulin signaling to induce cachexia‐like wasting. Dev Cell 33: 47–55 PubMed PMC
Galvan‐Pena S, O'Neill LAJ (2014) Metabolic reprograming in macrophage polarization. Front Immunol 5: 420 PubMed PMC
Ganeshan K, Chawla A (2014) Metabolic regulation of immune responses. Annu Rev Immunol 32: 609–634 PubMed PMC
Ganeshan K, Nikkanen J, Man K, Leong YA, Sogawa Y, Maschek JA, Van Ry T, Chagwedera DN, Cox JE, Chawla A (2019) Energetic trade‐offs and hypometabolic states promote disease tolerance. Cell 177: 399–413.e12 PubMed PMC
Ge SX, Son EW, Yao R (2018) iDEP: an integrated web application for differential expression and pathway analysis of RNA‐Seq data. BMC Bioinformatics 19: 534 PubMed PMC
Grönke S, Beller M, Fellert S, Ramakrishnan H, Jäckle H, Kühnlein RP (2003) Control of fat storage by a Drosophila PAT domain protein. Curr Biol 13: 603–606 PubMed
Hang S, Purdy AE, Robins WP, Wang Z, Mandal M, Chang S, Mekalanos JJ, Watnick PI (2014) The acetate switch of an intestinal pathogen disrupts host insulin signaling and lipid metabolism. Cell Host Microbe 16: 592–604 PubMed PMC
Honegger B, Galic M, Köhler K, Wittwer F, Brogiolo W, Hafen E, Stocker H (2008) Imp‐L2, a putative homolog of vertebrate IGF‐binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J Biol 7: 10 PubMed PMC
Izquierdo MC, Shanmugarajah N, Lee SX, Kraakman MJ, Westerterp M, Kitamoto T, Harris M, Cook JR, Gusarova GA, Zhong K et al (2022) Hepatic FoxOs link insulin signaling with plasma lipoprotein metabolism through an apolipoprotein M/sphingosine‐1‐phosphate pathway. J Clin Invest 132: e146219 PubMed PMC
Kedia‐Mehta N, Finlay DK (2019) Competition for nutrients and its role in controlling immune responses. Nat Commun 10: 2123 PubMed PMC
Koyama T, Rodrigues MA, Athanasiadis A, Shingleton AW, Mirth CK (2014) Nutritional control of body size through FoxO‐Ultraspiracle mediated ecdysone biosynthesis. Elife 3: e03091 PubMed PMC
Krejčová G, Danielová A, Nedbalová P, Kazek M, Strych L, Chawla G, Tennessen JM, Lieskovská J, Jindra M, Doležal T et al (2019) Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense. Elife 8: e50414 PubMed PMC
Kurucz É, Márkus R, Zsámboki J, Folkl‐Medzihradszky K, Darula Z, Vilmos P, Udvardy A, Krausz I, Lukacsovich T, Gateff E et al (2007) Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr Biol 17: 649–654 PubMed
Kwon Y, Song W, Droujinine IA, Hu Y, Asara JM, Perrimon N (2015) Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Dev Cell 33: 36–46 PubMed PMC
Lee H‐J, Hong W‐G, Woo Y, Ahn J‐H, Ko H‐J, Kim H, Moon S, Hahn T‐W, Jung YM, Song D‐K et al (2020) Lysophosphatidylcholine enhances bactericidal activity by promoting phagosome maturation via the activation of the NF‐κB pathway during Salmonella infection in mouse macrophages. Mol Cells 43: 989–1001 PubMed PMC
Liu P, Zhu W, Chen C, Yan B, Zhu L, Chen X, Peng C (2020) The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci 247: 117443 PubMed
Martínez BA, Hoyle RG, Yeudall S, Granade ME, Harris TE, Castle JD, Leitinger N, Bland ML (2020) Innate immune signaling in Drosophila shifts anabolic lipid metabolism from triglyceride storage to phospholipid synthesis to support immune function. PLoS Genet 16: e1009192 PubMed PMC
Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M‐1/M‐2 macrophages and the Th1/Th2 paradigm. J Immunol 164: 6166–6173 PubMed
Mohamed A, Hill MM (2021) LipidSuite: interactive web server for lipidomics differential and enrichment analysis. Nucleic Acids Res 49: W346–W351 PubMed PMC
Morgantini C, Jager J, Li X, Levi L, Azzimato V, Sulen A, Barreby E, Xu C, Tencerova M, Näslund E et al (2019) Liver macrophages regulate systemic metabolism through non‐inflammatory factors. Nat Metab 1: 445–459 PubMed
Newsholme P (2021) Cellular and metabolic mechanisms of nutrient actions in immune function. Nutr Diabetes 11: 22 PubMed PMC
Oliva‐Vilarnau N, Vorrink SU, Ingelman‐Sundberg M, Lauschke VM (2020) A 3D cell culture model identifies Wnt/β‐catenin mediated inhibition of p53 as a critical step during human hepatocyte regeneration. Adv Sci 7: 2000248 PubMed PMC
Owusu‐Ansah E, Song W, Perrimon N (2013) Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155: 699–712 PubMed PMC
Palm W, Sampaio JL, Brankatschk M, Carvalho M, Mahmoud A, Shevchenko A, Eaton S (2012) Lipoproteins in Drosophila melanogaster—assembly, function, and influence on tissue lipid composition. PLoS Genet 8: e1002828 PubMed PMC
Rankin LC, Artis D (2018) Beyond host defense: emerging functions of the immune system in regulating complex tissue physiology. Cell 173: 554–567 PubMed
Remmerie A, Scott CL (2018) Macrophages and lipid metabolism. Cell Immunol 330: 27–42 PubMed PMC
Roed NK, Viola CM, Kristensen O, Schluckebier G, Norrman M, Sajid W, Wade JD, Andersen AS, Kristensen C, Ganderton TR et al (2018) Structures of insect Imp‐L2 suggest an alternative strategy for regulating the bioavailability of insulin‐like hormones. Nat Commun 9: 3860 PubMed PMC
Santalla M, García A, Mattiazzi A, Valverde CA, Schiemann R, Paululat A, Hernández G, Meyer H, Ferrero P (2022) Interplay between SERCA, 4E‐BP, and eIF4E in the Drosophila heart. PloS One 17: e0267156 PubMed PMC
Sloth Andersen A, Hertz Hansen P, Schäffer L, Kristensen C (2000) A new secreted insect protein belonging to the immunoglobulin superfamily binds insulin and related peptides and inhibits their activities. J Biol Chem 275: 16948–16953 PubMed
Sun J, Nishiyama T, Shimizu K, Kadota K (2013) TCC: an R package for comparing tag count data with robust normalization strategies. BMC Bioinformatics 14: 219 PubMed PMC
Tencerova M (2020) Glucan‐encapsulated siRNA particles (GeRPs) for specific gene silencing in Kupffer cells in mouse liver. Methods Mol Biol 2164: 65–73 PubMed
Tencerova M, Aouadi M, Vangala P, Nicoloro SM, Yawe JC, Cohen JL, Shen Y, Garcia‐Menendez L, Pedersen DJ, Gallagher‐Dorval K et al (2015) Activated Kupffer cells inhibit insulin sensitivity in obese mice. FASEB J 29: 2959–2969 PubMed PMC
Tesz GJ, Aouadi M, Prot M, Nicoloro SM, Boutet E, Amano SU, Goller A, Wang M, Guo C‐A, Salomon WE et al (2011) Glucan particles for selective delivery of siRNA to phagocytic cells in mice. Biochem J 436: 351–362 PubMed
Tsatsoulis A, Mantzaris MD, Bellou S, Andrikoula M (2013) Insulin resistance: an adaptive mechanism becomes maladaptive in the current environment — An evolutionary perspective. Metabolism 62: 622–633 PubMed
Vorrink SU, Ullah S, Schmidt S, Nandania J, Velagapudi V, Beck O, Ingelman‐Sundberg M, Lauschke VM (2017) Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long‐term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. FASEB J 31: 2696–2708 PubMed PMC
Wasyluk W, Zwolak A (2021) Metabolic alterations in sepsis. J Clin Med 10: 2412 PubMed PMC
Yan J, Horng T (2020) Lipid metabolism in regulation of macrophage functions. Trends Cell Biol 30: 979–989 PubMed
Zhao X, Karpac J (2021) Glutamate metabolism directs energetic trade‐offs to shape host‐pathogen susceptibility in Drosophila . Cell Metab 33: 2428–2444.e8 PubMed PMC
Zhao P, Huang P, Xu T, Xiang X, Sun Y, Liu J, Yan C, Wang L, Gao J, Cui S et al (2021) Fat body Ire1 regulates lipid homeostasis through the Xbp1s‐FoxO axis in Drosophila . iScience 24: 102819 PubMed PMC
JAK/STAT mediated insulin resistance in muscles is essential for effective immune response
GEO
GSE237617