How to eliminate pathogen without killing oneself? Immunometabolism of encapsulation and melanization in Drosophila

. 2023 ; 14 () : 1330312. [epub] 20231206

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38124757

Cellular encapsulation associated with melanization is a crucial component of the immune response in insects, particularly against larger pathogens. The infection of a Drosophila larva by parasitoid wasps, like Leptopilina boulardi, is the most extensively studied example. In this case, the encapsulation and melanization of the parasitoid embryo is linked to the activation of plasmatocytes that attach to the surface of the parasitoid. Additionally, the differentiation of lamellocytes that encapsulate the parasitoid, along with crystal cells, is accountable for the melanization process. Encapsulation and melanization lead to the production of toxic molecules that are concentrated in the capsule around the parasitoid and, at the same time, protect the host from this toxic immune response. Thus, cellular encapsulation and melanization represent primarily a metabolic process involving the metabolism of immune cell activation and differentiation, the production of toxic radicals, but also the production of melanin and antioxidants. As such, it has significant implications for host physiology and systemic metabolism. Proper regulation of metabolism within immune cells, as well as at the level of the entire organism, is therefore essential for an efficient immune response and also impacts the health and overall fitness of the organism that survives. The purpose of this "perspective" article is to map what we know about the metabolism of this type of immune response, place it in the context of possible implications for host physiology, and highlight open questions related to the metabolism of this important insect immune response.

Zobrazit více v PubMed

Nappi AJ, Vass E. Cytotoxic reactions associated with insect immunity. In: Beck G, Sugumaran M, Cooper EL, editors. Phylogenetic Perspectives on the Vertebrate Immune System. Boston, MA: Springer US; (2001). p. 329–48. Available at: http://link.springer.com/10.1007/978-1-4615-1291-2_33. (Advances in Experimental Medicine and Biology; vol. 484). PubMed

Yang L, Qiu L, Fang Q, Stanley DW, Ye G. Cellular and humoral immune interactions between Drosophila and its parasitoids. Insect Sci (2021) 28(5):1208–27. doi: 10.1111/1744-7917.12863 PubMed DOI

Nappi AJ, Christensen BM. Melanogenesis and associated cytotoxic reactions: Applications to insect innate immunity. Insect Biochem Mol Biol (2005) 35(5):443–59. doi: 10.1016/j.ibmb.2005.01.014 PubMed DOI

Sugumaran M, Barek H. Critical analysis of the melanogenic pathway in insects and higher animals. Int J Mol Sci (2016) 17(10):1753. doi: 10.3390/ijms17101753 PubMed DOI PMC

Kim-Jo C, Gatti JL, Poirié M. Drosophila cellular immunity against parasitoid wasps: A complex and time-dependent process. Front Physiol (2019) 10:603/full. doi: 10.3389/fphys.2019.00603/full PubMed DOI PMC

Krejčová G, Danielová A, Nedbalová P, Kazek M, Strych L, Chawla G, et al. . Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense. eLife (2019) 8:e50414. doi: 10.7554/eLife.50414 PubMed DOI PMC

Krejčová G, Morgantini C, Zemanová H, Lauschke VM, Kovářová J, Kubásek J, et al. . Macrophage-derived insulin antagonist ImpL2 induces lipoprotein mobilization upon bacterial infection. EMBO J (2023) e114086. doi: 10.15252/embj.2023114086 PubMed DOI PMC

McMullen E, Strych L, Chodáková L, Krebs A, Dolezal T. JAK/STAT mediated insulin resistance in muscles is essential for effective immune response. bioRxiv (2023) 10.04.560867. doi: 10.1101/2023.10.04.560867 PubMed DOI PMC

Kazek M, Chodáková L, Lehr K, Strych L, Nedbalová P, McMullen E, et al. . Metabolism of glucose and trehalose by cyclic pentose phosphate pathway is essential for effective immune response in Drosophila. bioRxiv (2023) 08.17.553657. doi: 10.1101/2023.08.17.553657 DOI

Dolezal T, Krejcova G, Bajgar A, Nedbalova P, Strasser P. Molecular regulations of metabolism during immune response in insects. Insect Biochem Mol Biol (2019) 109:31–42. doi: 10.1016/j.ibmb.2019.04.005 PubMed DOI

Bajgar A, Kucerova K, Jonatova L, Tomcala A, Schneedorferova I, Okrouhlik J, et al. . Extracellular adenosine mediates a systemic metabolic switch during immune response. PloS Biol (2015) 13(4):e1002135. doi: 10.1371/journal.pbio.1002135 PubMed DOI PMC

DeJong RJ, Miller LM, Molina-Cruz A, Gupta L, Kumar S, Barillas-Mury C. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles Gambiae . Proc Natl Acad Sci (2007) 104(7):2121–6. doi: 10.1073/pnas.0608407104 PubMed DOI PMC

Schulenburg H, Kurtz J, Moret Y, Siva-Jothy MT. Introduction. Ecological immunology. Philos Trans R Soc B: Biol Sci (2008) 364(1513):3–14. doi: 10.1098/rstb.2008.0249 PubMed DOI PMC

Fuchs S, Behrends V, Bundy JG, Crisanti A, Nolan T. Phenylalanine metabolism regulates reproduction and parasite melanization in the malaria mosquito. PloS One (2014) 9(1):e84865. doi: 10.1371/journal.pone.0084865 PubMed DOI PMC

Kohler LJ, Carton Y, Mastore M, Nappi AJ. Parasite suppression of the oxidations of eumelanin precursors inDrosophila melanogaster. Arch Insect Biochem Physiol (2007) 66(2):64–75. doi: 10.1002/arch.20199 PubMed DOI

Schmid MR, Anderl I, Vesala L, Vanha-aho LM, Deng XJ, Rämet M, et al. . Control of drosophila blood cell activation via toll signaling in the fat body. PloS One (2014) 9(8):e102568. doi: 10.1371/journal.pone.0102568 PubMed DOI PMC

Anderl I, Vesala L, Ihalainen TO, Vanha-aho LM, Andó I, Rämet M, et al. . Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection. PloS Pathog (2016) 12(7):e1005746. doi: 10.1371/journal.ppat.1005746 PubMed DOI PMC

Dudzic JP, Kondo S, Ueda R, Bergman CM, Lemaitre B. Drosophila innate immunity: regional and functional specialization of prophenoloxidases. BMC Biol (2015) 13(1):81. doi: 10.1186/s12915-015-0193-6 PubMed DOI PMC

Cattenoz PB, Sakr R, Pavlidaki A, Delaporte C, Riba A, Molina N, et al. . Temporal specificity and heterogeneity of Drosophila immune cells. EMBO J (2020) 39(12):e104486. doi: 10.15252/embj.2020104486 PubMed DOI PMC

Tattikota SG, Cho B, Liu Y, Hu Y, Barrera V, Steinbaugh MJ, et al. . A single-cell survey of Drosophila blood. eLife (2020) 9:e54818. doi: 10.7554/eLife.54818 PubMed DOI PMC

Yu W, Wang Z, Zhang K, Chi Z, Xu T, Jiang D, et al. . One-carbon metabolism supports S-adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol Cell (2019) 75(6):1147–1160.e5. doi: 10.1016/j.molcel.2019.06.039 PubMed DOI

Williams MJ, Ando I, Hultmark D. Drosophila melanogaster Rac2 is necessary for a proper cellular immune response. Genes To Cells: Devoted to Mol Cell Mechanisms (2005) 10(8):813–23. doi: 10.1111/j.1365-2443.2005.00883.x PubMed DOI

Britt EC, Lika J, Giese MA, Schoen TJ, Seim GL, Huang Z, et al. . Switching to the cyclic pentose phosphate pathway powers the oxidative burst in activated neutrophils. Nat Metab (2022) 4(3):389–403. doi: 10.1038/s42255-022-00550-8 PubMed DOI PMC

Merritt TJS, Kuczynski C, Sezgin E, Zhu CT, Kumagai S, Eanes WF. Quantifying interactions within the NADP(H) enzyme network in Drosophila melanogaster. Genetics (2009) 182(2):565–74. doi: 10.1534/genetics.109.100677 PubMed DOI PMC

Katz J, Rognstad R. The labeling of pentose phosphate from glucose-14C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesis*. Biochemistry (1967) 6(7):2227–47. doi: 10.1021/bi00859a046 PubMed DOI

Des Marteaux L, Kučera L, Moos M, Štětina T, Korbelová J, Des Marteaux L, et al. . A mixture of innate cryoprotectants is key for freeze tolerance and cryopreservation of a drosophilid fly larva. J Exp Biol (2022) 225(8):jeb243934. doi: 10.1242/jeb.243934 PubMed DOI

Teulier L, Weber JM, Crevier J, Darveau CA. Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans. Proc R Soc B: Biol Sci (2016) 283(1834):20160333. doi: 10.1098/rspb.2016.0333 PubMed DOI PMC

Piyankarage SC, Augustin H, Featherstone DE, Shippy SA. Hemolymph amino acid variations following behavioral and genetic changes in individual Drosophila larvae. Amino Acids (2010) 38(3):779–88. doi: 10.1007/s00726-009-0284-1 PubMed DOI

González-Santoyo I, Córdoba-Aguilar A. Phenoloxidase: a key component of the insect immune system. Entomol Experimentalis Applicata (2012) 142(1):1–16. doi: 10.1111/j.1570-7458.2011.01187.x DOI

Galván I, Jorge A, Edelaar P, Wakamatsu K. Insects synthesize pheomelanin. Pigment Cell Melanoma Res (2015) 28(5):599–602. doi: 10.1111/pcmr.12397 PubMed DOI

Han Q, Fang J, Ding H, Johnson JK, Christensen BM, Li J. Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes. Biochem J (2002) 368(Pt 1):333–40. doi: 10.1042/bj20020272 PubMed DOI PMC

Vasiliou V, Ross D, Nebert DW. Update of the NAD(P)H:quinone oxidoreductase (NQO) gene family. Hum Genomics (2006) 2(5):329–35. doi: 10.1186/1479-7364-2-5-329 PubMed DOI PMC

Bauer H, Kanzok SM, Schirmer RH. Thioredoxin-2 but Not Thioredoxin-1 Is a Substrate of Thioredoxin Peroxidase-1 from Drosophila melanogaster. J Biol Chem (2002) 277(20):17457–63. doi: 10.1074/jbc.M200636200 PubMed DOI

Parkhitko AA, Jouandin P, Mohr SE, Perrimon N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell (2019) 18(6):e13034. doi: 10.1111/acel.13034 PubMed DOI PMC

Sadiku P, Willson JA, Ryan EM, Sammut D, Coelho P, Watts ER, et al. . Neutrophils fuel effective immune responses through gluconeogenesis and glycogenesis. Cell Metab (2021) 33(2):411–423.e4. doi: 10.1016/j.cmet.2020.11.016 PubMed DOI PMC

Yamada T, Habara O, Kubo H, Nishimura T. Fat body glycogen serves as a metabolic safeguard for the maintenance of sugar levels in Drosophila. Development (2018) 145(6):dev158865. doi: 10.1242/dev.158865 PubMed DOI

Nappi AJ, Vass E. Hydrogen peroxide production in immune-reactive Drosophila melanogaster. J Parasitol (1998) 84(6):1150. doi: 10.2307/3284664 PubMed DOI

Wu S, Yin S, Zhou B. Molecular physiology of iron trafficking in Drosophila melanogaster. Curr Opin Insect Sci (2022) 50:100888. doi: 10.1016/j.cois.2022.100888 PubMed DOI

Iatsenko I, Marra A, Boquete JP, Peña J, Lemaitre B. Iron sequestration by transferrin 1 mediates nutritional immunity in Drosophila melanogaster. Proc Natl Acad Sci (2020) 117(13):7317–25. doi: 10.1073/pnas.1914830117 PubMed DOI PMC

Handke B, Poernbacher I, Goetze S, Ahrens CH, Omasits U, Marty F, et al. . The hemolymph proteome of fed and starved Drosophila larvae. PloS One (2013) 8(6):e67208–8. doi: 10.1371/journal.pone.0067208 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...