A mixture of innate cryoprotectants is key for freeze tolerance and cryopreservation of a drosophilid fly larva

. 2022 Apr 15 ; 225 (8) : . [epub] 20220427

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35380003

Grantová podpora
19-13381S Grantov Agentura ɨesk Republiky
RVO 68378050 Akademie Vʃd ɨesk Republiky
LM2018126 Ministerstvo
MZE RO0418 Ministerstvo Zemʃdʃlstv
19-13381S Grantová Agentura České Republiky
68378050 Akademie věd České Republiky,
LM2018126 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_013/0001789 European Structural and Investing Funds
RO0418 Ministerstvo Zemědělství

Insects that naturally tolerate internal freezing produce complex mixtures of multiple cryoprotectants (CPs). Better knowledge on composition of these mixtures, and on the mechanisms of individual CP interactions, could inspire development of laboratory CP formulations optimized for cryopreservation of cells and other biological material. Here, we identify and quantify (using high resolution mass spectrometry) a range of putative CPs in larval tissues of a subarctic fly, Chymomyza costata, which survives long-term cryopreservation in liquid nitrogen. The CPs proline, trehalose, glutamine, asparagine, glycine betaine, glycerophosphoethanolamine, glycerophosphocholine and sarcosine accumulate in hemolymph in a ratio of 313:108:55:26:6:4:2.9:0.5 mmol l-1. Using calorimetry, we show that artificial mixtures, mimicking the concentrations of major CPs in hemolymph of freeze-tolerant larvae, suppress the melting point of water and significantly reduce the ice fraction. We demonstrate in a bioassay that mixtures of CPs administered through the diet act synergistically rather than additively to enable cryopreservation of otherwise freeze-sensitive larvae. Using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), we show that during slow extracellular freezing trehalose becomes concentrated in partially dehydrated hemolymph where it stimulates transition to the amorphous glass phase. In contrast, proline moves to the boundary between extracellular ice and dehydrated hemolymph and tissues where it probably forms a layer of dense viscoelastic liquid. We propose that amorphous glass and viscoelastic liquids may protect macromolecules and cells from thermomechanical shocks associated with freezing and transfer into and out of liquid nitrogen.

Citace poskytuje Crossref.org

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...