New Insights into the Complex Relationship between Weight and Maturity of Burgundy Truffles (Tuber aestivum)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28125633
PubMed Central
PMC5268403
DOI
10.1371/journal.pone.0170375
PII: PONE-D-16-33354
Knihovny.cz E-zdroje
- MeSH
- Ascomycota růst a vývoj MeSH
- plodnice hub růst a vývoj MeSH
- půda MeSH
- stadia vývoje * MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Maďarsko MeSH
- Švýcarsko MeSH
- Názvy látek
- půda MeSH
Despite an increasing demand for Burgundy truffles (Tuber aestivum), gaps remain in our understanding of the fungus' overall lifecycle and ecology. Here, we compile evidence from three independent surveys in Hungary and Switzerland. First, we measured the weight and maturity of 2,656 T. aestivum fruit bodies from a three-day harvest in August 2014 in a highly productive orchard in Hungary. All specimens ranging between 2 and 755 g were almost evenly distributed through five maturation classes. Then, we measured the weight and maturity of another 4,795 T. aestivum fruit bodies harvested on four occasions between June and October 2015 in the same truffière. Again, different maturation stages occurred at varying fruit body size and during the entire fruiting season. Finally, the predominantly unrelated weight and maturity of 81 T. aestivum fruit bodies from four fruiting seasons between 2010 and 2013 in Switzerland confirmed the Hungarian results. The spatiotemporal coexistence of 7,532 small-ripe and large-unripe T. aestivum, which accumulate to ~182 kg, differs from species-specific associations between the size and ripeness that have been reported for other mushrooms. Although size-independent truffle maturation stages may possibly relate to the perpetual belowground environment, the role of mycelial connectivity, soil property, microclimatology, as well as other abiotic factors and a combination thereof, is still unclear. Despite its massive sample size and proof of concept, this study, together with existing literature, suggests consideration of a wider ecological and biogeographical range, as well as the complex symbiotic fungus-host interaction, to further illuminate the hidden development of belowground truffle fruit bodies.
Agrifood Research and Technology Centre of Aragon CITA Zaragoza Spain
Chair of Forest Growth Albert Ludwigs University Freiburg Germany
CzechGlobe Research Institute CAS and Masaryk University Brno Brno Czech Republic
Department of Geography University of Cambridge Cambridge United Kingdom
European Mycological Institute EGTC EMI Soria Spain
Goethe University Frankfurt Institute for Molecular Bio Science Frankfurt Germany
INRA UMR1136 Interactions Arbres Microorganismes Champenoux France
Integrative Fungal Research Cluster Frankfurt Germany
Swiss Federal Research Institute WSL Birmensdorf Switzerland
Truffleminers Ltd Taksony Kinizsi Hungary
UMR 5175 CEFE University of Montpellier Montpellier France
Université de Lorraine UMR1136 Interactions Arbres Microorganismes Vandoeuvre lès Nancy France
Zobrazit více v PubMed
Bonito G, Smith ME, Nowak M, Healy RA, Guevara G, Cázares E, et al. Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage. PLOS ONE. 2013;8(1): e52765 10.1371/journal.pone.0052765 PubMed DOI PMC
Hall IR, Yun W, Amicucci A. Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol. 2003;21: 433–438. 10.1016/S0167-7799(03)00204-X PubMed DOI
Callot G. La Truffe, La Terre, la Vie. INRA, Paris; 1999.
Stobbe U, Büntgen U, Sproll L, Tegel W, Egli S, Fink S. Spatial distribution and ecological variation of re-discovered German truffle habitats. Fun Ecol. 2012;5: 591–599.
Stobbe U, Egli S, Tegel W, Peter M, Sproll L, Büntgen U. Potential and limitations of Burgundy truffle cultivation. Appl Microbiol Biotechnol. 2013a;97: 5215–5224. PubMed
Samils N, Olivera A, Danell E, Alexander S, Fischer C, Colinas C. The socioeconomic impact of truffle cultivation in rural Spain. Econ Bot. 2008;62: 331–340.
Martin F. Unearthing the truffle genome. New Phytol. 2011;189: 645–646. 10.1111/j.1469-8137.2010.03618.x PubMed DOI
Büntgen U, Egli S, Camarero JJ, Fischer EM, Stobbe U, Kauserud H, et al. Drought-induced decline in Mediterranean truffle harvest. Nature Clim Change. 2012a;2: 827–829.
Frey-Klett P, Garbaye J, Tarkka M. The mycorrhiza helper bacteria revisited. New Phytol. 2007;176: 22–36. 10.1111/j.1469-8137.2007.02191.x PubMed DOI
Mello A, Miozzi L, Vizzini A, Napoli C, Kowalchuk G, Bonfante P. Bacterial and fungal communities associated with Tuber magnatum-productive niches. Plant Biosystems. 2010;144: 323–332.
Büntgen U, Egli S, Tegel W, Stobbe U, Sproll L, Elburg R, et al. Illuminating the mysterious world of truffles. Frontiers Ecol Environ. 2012b;10: 462–463.
Martínez-Peña F, de-Miguel S, Pukkala T, Bonet JA, Ortega-Martínez P, Aldea J, et al. Yield models for ectomycorrhizal mushrooms in Pinus sylvestris forests with special focus on Boletus edulis and Lactarius group deliciosus. Forest Ecol Manage. 2012;282: 63–69.
Le Tacon F, Zeller B, Plain C, Hossann C, Bréchet C, Robin C. Carbon transfer from the host to Tuber melanosporum mycorrhizas and ascocarps followed using a 13C pulse-labeling technique. PLOS ONE. 2013;8: e64626 10.1371/journal.pone.0064626 PubMed DOI PMC
Weden C, Chevalier G, Danell E. Tuber aestivum (syn. T. uncinatum) biotopes and their history on Gotland, Sweden. Mycol Res. 2004a;108: 304–310. PubMed
Weden C, Danell E, Camacho FJ, Backlund A. The population of the hypogeous fungus Tuber aestivum syn. T. uncinatum on the island of Gotland. Mycorrhiza. 2004b;14: 19–23. PubMed
Diamandis S, Perlerou C. Recent records of hypogeous fungi in Greece. Acta Mycol. 2008;43: 139–142.
Gogan Csorbaine A, Nagy Z, Degi Z, Bagi I, Dimenyi J. Ecological characteristics of a Hungarian summer truffle (Tuber aestivum Vittad.) producing area. Acta Mycol. 2012;47: 133–138.
Zeppa S, Gioacchini AM, Guidi C, Guescini M, Pierleoni R, Zambonelli A, et al. Determination of specific volatile organic compounds synthesised during Tuber borchii fruit body development by solid-phase microextraction and gas chromatography mass spectrometry. Rapid Commun Mass Spectrom. 2004;18: 199–205. 10.1002/rcm.1313 PubMed DOI
Splivallo R, Valdez N, Kirchhoff N, Ona MC, Schmidt JP, Feussner I, et al. Intraspecific genotypic variability determines concentrations of key truffle volatiles. New Phytol. 2012;194: 823–835. 10.1111/j.1469-8137.2012.04077.x PubMed DOI PMC
Mello A, Cantisani A, Vizzini A, Bonfante P. Genetic variability of Tuber uncinatum and its relatedness to other black truffles. Environ Microbiol. 2002;4: 584–594. PubMed
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biometrical J. 2008;50: 346–363. PubMed
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: 2015.
Büntgen U, Tegel W, Egli S, Stobbe U, Sproll L, Stenseth NC. Truffles and climate change. Frontiers Ecol Environ. 2011;9: 150–151.
Paolocci F, Rubini A, Riccioni C, Topini F, Arcioni S. Tuber aestivum and Tuber uncinatum: two morphotypes or two species? FEMS Microbiol Lett. 2004;235: 109–115. 10.1016/j.femsle.2004.04.029 PubMed DOI
Weden C, Danell E, Tibell L. Species recognition in the truffle genus Tuber–the synonyms Tuber aestivum and Tuber uncinatum. Environ Microbiol. 2005;7: 1535–1546. 10.1111/j.1462-2920.2005.00837.x PubMed DOI
Molinier V, van Tuinen D, Chevalier G, Gollotte A, Wipf D, Redecker D. A multigene phylogeny demonstrates that Tuber aestivum and Tuber uncinatum are conspecific organisms. Diversity Evol. 2013;13: 503–512.
Diaz P, Ibanez E, Reglero G, Senorans FJ. Optimization of summer truffle aroma analysis by SPME: Comparison of extraction with different polarity fibers. Food Sci Technol. 2009;42: 1253–1259.
Culleré L, Ferreira V, Chevret B, Venturini ME, Sanchez-Gimeno AC, Blanco D. Characterisation of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography-olfactometry. Food Chem. 2010;122: 300–306.
Molinier V, Murat C, Frochot H, Wipf D, Splivallo R. Fine-scale spatial genetic structure analysis of the black truffle Tuber aestivum and its link to aroma variability. Environ Microbiol. 2015;17: 3039–3050. 10.1111/1462-2920.12910 PubMed DOI
Benucci G, Bonito G, Falini L, Bencivenga M. Mycorrhization of Pecan trees (Carya illinoinensis) with commercial truffle species: Tuber aestivum Vittad. and Tuber borchii Vittad. Mycorrhiza. 2012;22: 383–392. 10.1007/s00572-011-0413-z PubMed DOI
Stobbe U, Stobbe A, Sproll L, Tegel W, Peter M, Büntgen U, et al. New evidence for the symbiosis between Tuber aestivum and Picea abies. Mycorrhiza. 2013b;23: 669–673. PubMed
Shamekh S, Grebenc T, Leisola M, Turunen O. The cultivation of oak seedlings inoculated with Tuber aestivum Vittad. in the boreal region of Finland. Mycol Prog. 2014;13: 373–380.
Benucci GMN, Raggi L, Albertini E, Grebenc T, Bencivenga M, Falcinelli M, et al. Ectomycorrhizal communities in a productive Tuber aestivum Vittad. orchard: composition, host influence and species replacement. FEMS Microbiol Ecol. 2011;76: 170–184. 10.1111/j.1574-6941.2010.01039.x PubMed DOI
Gryndler M, Hrselova H, Soukupova L, Streiblova E, Valda S, Borovicka J, et al. Detection of summer truffle (Tuber aestivum Vittad.) in ectomycorrhizae and in soil using specific primers. FEMS Microbiol Lett. 2011;318: 84–91. 10.1111/j.1574-6968.2011.02243.x PubMed DOI
Salerni E, Aguanno M, Leonardi P, Perini C. Ectomycorrhizal communities above and below ground and truffle productivity in a Tuber aestivum orchard. Forest Systems. 2014;23: 329–338.
Pacioni G, Leonardi M, Di Carlo P, Ranalli D, Zinni A, De Laurentiis G. Instrumental monitoring of the birth and development of truffles in a Tuber melanosporum orchard. Mycorrhiza. 2014;24: 65–72. PubMed
Splivallo R, Deveau A, Valdez N, Kirchhoff N, Frey-Klett P, Karlovsky P. Bacteria associated with truffle-fruiting bodies contribute to truffle aroma. Environ Microbiol. 2014;17: 2647–2660. 10.1111/1462-2920.12521 PubMed DOI
Splivallo R, Ebeler S. Sulfur volatiles of microbial origin are key contributors to human-sensed truffle aroma. Appl Microbiol Biotechnol. 2015;99: 2583–2592. 10.1007/s00253-014-6360-9 PubMed DOI
Vahdatzadeh M, Deveau A, Splivallo R. The role of the microbiome of truffles in aroma formation: a meta-analysis approach. Appl Environ Microbiol. 2015;81: 6946–6952. 10.1128/AEM.01098-15 PubMed DOI PMC
Harki E, Bouya D, Dargent R. Maturation-associated alterations of the biochemical characteristics of the black truffle Tuber melanosporum Vitt. Food Chem. 2006;99: 394–400.
Benucci GMN, Bonito GM. The truffle microbiome: Species and geography effects on bacteria associated with fruiting bodies of hypogeous pezizales. Microb Ecol. 2016;72: 4–8. 10.1007/s00248-016-0755-3 PubMed DOI
Antony-Babu S, Deveau A, Van Nostrand JD, Zhou J, Le Tacon F, Robin C, et al. Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environ Microbiol. 2014;16: 2831–2847. 10.1111/1462-2920.12294 PubMed DOI
Moore D. Fungal Morphogenesis. Cambridge University Press; 1998.
Kües U, Liu Y. Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol. 2000;54: 141–152. PubMed
Debuchy R, Berteaux-Lecellier V, Silar P. Mating systems and sexual morphogenesis in ascomycetes. Cellular and molecular biology of filamentous fungi. ASM Press. 2010;33: 501–536.
Paolocci F, Rubini A, Riccioni C, Arcioni S. Reevaluation of the life cycle of Tuber magnatum. Appl Environ Microbiol. 2006;72: 2390–2393. 10.1128/AEM.72.4.2390-2393.2006 PubMed DOI PMC
Rubini A, Belfiori B, Riccioni C, Arcioni S, Martin F, Paolocci F. Tuber melanosporum: mating type distribution in a natural plantation and dynamics of strains of different mating types on the roots of nursery-inoculated host plants. New Phytol. 2011a;189: 723–735. PubMed
Rubini A, Belfiori B, Riccioni C, Tisserant E, Arcioni S, Martin F, et al. Isolation and characterization of MAT genes in the symbiotic ascomycete Tuber melanosporum. New Phytol. 2011b;189: 710–722. PubMed
Le Tacon F, Rubini A, Murat C, Riccioni C, Robin C, Belfiori B, et al. Certainties and uncertainties about the life cycle of the Périgord black truffle (Tuber melanosporum Vittad.). Annals Forest Sci. 2015;1: 1–13.
Healy RA, Smith ME, Bonito GM, Pfister DH, Ge ZW, Guevara GG, et al. High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales. Mol Ecol. 2013;22: 1717–1732. 10.1111/mec.12135 PubMed DOI
Pacioni G, Rapino C, Zarivi O, Falconi A, Leonardi M, Battista N, et al. Truffles contain endocannabinoid metabolic enzymes and anandamide. Phytochem. 2015;110: 104–110. PubMed
Talou T, Kulifaj M. Secrets of the truffle. Recherche. 1992;23: 30–39.
Splivallo R, Ottonello S, Mello A, Karlovsky P. Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol. 2011;189: 688–699. PubMed
Zawirska-Wojtasiak R. Optical purity of (R)-(−)-1-octen-3-ol in the aroma of various species of edible mushrooms. Food Chemi. 2004;86: 113–118.
Moore-Kucera J, Dick RP. Application of 13C-labeled litter and root materials for in situ decomposition studies using phospholipid fatty acids. Soil Biol Biochem. 2008;40: 2485–2493.
Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, et al. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil. 2013;366: 1–27.
Fernandez CW, Koide RT. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol Biochem. 2014;77: 150–157.