Predicted climate change will increase the truffle cultivation potential in central Europe

. 2020 Dec 04 ; 10 (1) : 21281. [epub] 20201204

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33277535
Odkazy

PubMed 33277535
PubMed Central PMC7719165
DOI 10.1038/s41598-020-76177-0
PII: 10.1038/s41598-020-76177-0
Knihovny.cz E-zdroje

Climate change affects the distribution of many species, including Burgundy and Périgord truffles in central and southern Europe, respectively. The cultivation potential of these high-prized cash crops under future warming, however, remains highly uncertain. Here we perform a literature review to define the ecological requirements for the growth of both truffle species. This information is used to develop niche models, and to estimate their cultivation potential in the Czech Republic under current (2020) and future (2050) climate conditions. The Burgundy truffle is already highly suitable for cultivation on ~ 14% of agricultural land in the Czech Republic (8486 km2), whereas only ~ 8% of the warmest part of southern Moravia are currently characterised by a low suitability for Périgord truffles (6418 km2). Though rising temperatures under RCP8.5 will reduce the highly suitable cultivation areas by 7%, the 250 km2 (3%) expansion under low-emission scenarios will stimulate Burgundy truffles to benefit from future warming. Doubling the moderate and expanding the highly suitable land by 352 km2 in 2050, the overall cultivation potential for Périgord truffles will rise substantially. Our findings suggest that Burgundy and Périgord truffles could become important high-value crops for many regions in central Europe with alkaline soils. Although associated with uncertainty, long-term investments in truffle cultivation could generate a wide range of ecological and economic benefits.

Zobrazit více v PubMed

Diez J, et al. Altitudinal upwards shifts in fungal fruiting in the Alps. Proc. R. Soc. B. 2020;287:20192348. doi: 10.1098/rspb.2019.2348. PubMed DOI PMC

Gange AC, et al. Trait-dependent distributional shifts in fruiting of common British fungi. Ecography. 2018;41:51–61. doi: 10.1111/ecog.03233. DOI

Boddy L, et al. Climate variation effects on fungal fruiting. Fungal Ecol. 2014;10:20–33. doi: 10.1016/j.funeco.2013.10.006. DOI

Andrew C, et al. Open-source data reveal how collections-based fungal diversity is sensitive to global change. Appl. Plant Sci. 2019;7:e01227. doi: 10.1002/aps3.1227. PubMed DOI PMC

Marx DH, Marrs LF, Cordell CE. Practical use of the mycorrhizal fungal technology in forestry, reclamation, arboriculture, and horticulture. Dendrobiology. 2002;47:27–40.

Parmesan C, Yohe GA. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42. doi: 10.1038/nature01286. PubMed DOI

Fordham DA, et al. Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming? Glob. Chang. Biol. 2012;18:1357–1371. doi: 10.1111/j.1365-2486.2011.02614.x. DOI

Harrison P, Berry PM, Butt N, New M. Modelling climate change impacts on species’ distributions at the European scale: implications for conservation policy. Environ. Sci. Policy. 2006;9:116–128. doi: 10.1016/j.envsci.2005.11.003. DOI

Guo Y, et al. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios. Sci. Rep. 2017;7:46221. doi: 10.1038/srep46221. PubMed DOI PMC

Araújo MB, Peterson AT. Uses and misuses of bioclimatic envelope modeling. Ecology. 2012;93:1527–1539. doi: 10.1890/11-1930.1. PubMed DOI

Ehrlén J, Morris WF. Predicting changes in the distribution and abundance of species under environmental change. Ecol. Lett. 2015;18:303–314. doi: 10.1111/ele.12410. PubMed DOI PMC

Chambers D, Périé C, Casajus N, de Blois S. Challenges in modelling the abundance of 105 tree species in eastern North America using climate, edaphic, and topographic variables. For. Ecol. Manag. 2013;291:20–29. doi: 10.1016/j.foreco.2012.10.046. DOI

Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006;190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026. DOI

Anderson RP. A framework for using niche models to estimate impacts of climate change on species distributions. Ann. Ny. Acad. Sci. 2013;1297:8–28. doi: 10.1111/nyas.12264. PubMed DOI

Berch, S. M. & Bonito, G. Cultivation in Mediterranean species of Tuber (Tuberaceae) in British Columbia, Canada. Mycorrhiza24, 473–479; 10.1007/s00572-014-0562-y (2014). PubMed

Păcurar, H. et al. Identification of Soils Factors Influence in the Distributions of Tuber aestivum in Transylvanian Subcarpathian Hills, Romania. Not. Bot. Horti. Afrobio.47, 478–486; 10.15835/nbha47111378 (2019).

Rellini I, Pavarino M, Scopesi C, Zotti M. Physical land suitability map for Tuber magnatum Pico in Piana Crixia municipality territory (Liguria-Italy) J. Maps. 2012;7:353–362. doi: 10.4113/jom.2011.1180. DOI

Serrano-Notivoli R, Martín-Santafé M, Sánchez S, Barriuso JJ. Cultivation potentiality of black truffle in Zaragoza province (Northeast Spain) J. Maps. 2012;12:994–998. doi: 10.1080/17445647.2015.1113392. DOI

Trappe JM, Claridge AW. The hidden life of truffles. Sci. Am. 2010;302:78–84. doi: 10.1038/scientificamerican0410-78. PubMed DOI

Stobbe U, et al. Potential and limitations of Burgundy truffle cultivation. Appl. Microbiol. Biotechnol. 2013;97:5215–5224. doi: 10.1007/s00253-013-4956-0. PubMed DOI

Stobbe U, et al. Spatial distribution and ecological variation of re-discovered German truffle habitats. Fungal Ecol. 2012;5:591–599. doi: 10.1016/j.funeco.2012.02.001. DOI

Delmas, J. Tuber spp. in The biology and cultivation of edible mushrooms (eds. Chang, S. T. & Hayes, W. A.) 645–681 (Academic Press, 1978).

Reyna S, Garcia-Barreda S. Black truffle cultivation: a global reality. Forest Syst. 2014;23:317–328. doi: 10.5424/fs/2014232-04771. DOI

Thomas P, Büntgen U. First harvest of Périgord black truffle in the UK as a result of climate change. Clim. Res. 2017;74:67–70. doi: 10.3354/cr01494. DOI

Büntgen U, et al. Truffles on the move. Front. Ecol. Environ. 2019;17:200–202. doi: 10.1002/fee.2033. DOI

Büntgen U, et al. Drought-induced decline in Mediterranean truffle harvest. Nat. Clim. Chang. 2012;2:827–829. doi: 10.1038/nclimate1733. DOI

Thomas P, Büntgen U. A risk assessment of Europe's black truffle sector under predicted climate change. Sci. Total Environ. 2019;655:27–34. doi: 10.1016/j.scitotenv.2018.11.252. PubMed DOI

Bonet, J. A. et al. Cultivation Methods of the Black Truffle, the Most Profitable Mediterranean Non-Wood Forest Product; A State of the Art Review. in Modelling, Valuing and Managing Mediterranean Forest Ecosystems for Non-Timber Goods and Services (eds. Palahí, M., Birot, Y., Bravo, F., & Gorriz, E.) 57–71 (European Forest Institute, 2009).

Bonet JA, Fisher CR, Colinas C. Cultivation of black truffle to promote reforestation and land-use stability. Agron. Sustain. Dev. 2006;26:69–76. doi: 10.1051/agro:2005059. DOI

Büntgen U, Latorre J, Egli S, Martínez-Peña F. Socio-economic, scientific, and political benefits of mycotourism. Ecosphere. 2017;8:e01870. doi: 10.1002/ecs2.1870. DOI

Chevalier G, Frochot H. Ecology and possibility of culture in Europe of the Burgundy truffle (Tuber uncinatum Chatin) Agric. Ecosyst. Environ. 1989;28:71–73. doi: 10.1016/0167-8809(90)90016-7. DOI

Chevalier G. The Truffle of Europe (Tuber aestivum): geographic limits, ecology and possibility of cultivation. Österr. Z. Pilzk. 2010;19:249–259.

Chevalier G. Europe, a continent with high potential for the cultivation of the Burgundy truffle (Tuber aestivum/uncinatum) Acta Mycol. 2012;47:127–132. doi: 10.5586/am.2012.014. DOI

Chytrý, M. Flora and Vegetation of the Czech Republic, Plant and Vegetation 14. (Springer, 2017).

Rivas-Martínez, S. Bioclimatic & Biogeographic Maps of Europe. (University of León, 2004).

Trnka M, et al. Soil moisture trends in the Czech Republic between 1961 and 2012. Int. J. Climatol. 2015;35:3733–3747. doi: 10.1002/joc.4242. DOI

Ji D, et al. Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model. Dev. 2014;7:2039–2064. doi: 10.5194/gmd-7-2039-2014. DOI

Voldoire A, et al. The CNRM-CM5.1 global climate model: description and basic evaluation. Clim. Dyn. 2013;40:2091–2121. doi: 10.1007/s00382-011-1259-y. DOI

Martin GM, et al. The HadGEM2 family of met office unified model climate configurations. Geosci. Model Dev. 2011;4:723–757. doi: 10.5194/gmd-4-723-2011. DOI

Dufresne J-L, et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 2013;40:2123–2165. doi: 10.1007/s00382-012-1636-1. DOI

Yukimoto S, et al. A new global climate model of the meteorological research institute: MRI-CGCM3. J. Meteorol. Soc. Jpn. 2012;90A:23–64. doi: 10.2151/jmsj.2012-A02. DOI

Dubrovský M, Trnka M, Holman IP, Svobodová E, Harrison P. Developing a reduced-form ensemble of climate change scenarios for Europe and its application to selected impact indicators. Clim. Change. 2015;128:169–186. doi: 10.1007/s10584-014-1297-7. DOI

Hay LE, Wilby RL, Leavesley GH. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc. 2007;36:387–397. doi: 10.1111/j.1752-1688.2000.tb04276.x. DOI

Plíva, K. Typologický systém ÚHUL. (Forest Management Institute, 1971).

Novotný, I. Metodika mapování a aktualizace bonitovaných půdně ekologických jednotek. (Research Institute for Soil and Water Conservation, 2013).

ESRI. ArcGIS Pro: Release 2.3.0. (Environmental Systems Research Institute, 2019).

ArcData Praha. ArcČR 500, Version 3.3. (ArcData Praha, 2016).

Malczewski, J. GIS and multicriteria decision analysis. (John Wiley, 1999).

Jaillard, B. et al. Soil Characteristics of Tuber melanosporum Habitat. in True Truffle (Tuber spp.) in the World (eds. Zambonelli, A., Iotti, M. & Murat, C.) 169–190 (Springer International Publishing, 2016).

Büntgen U, et al. New insights into the complex relationship between weight and maturity of Burgundy Truffles (Tuber aestivum) PLoS ONE. 2017;12:e0170375. doi: 10.1371/journal.pone.0170375. PubMed DOI PMC

Garcia-Barreda S, Camarero JJ, Vicente-Serrano SM, Serrano-Notivoli R. Variability and trends of black truffle production in Spain (1970–2017): Linkages to climate, host growth, and human factors. Agric. For. Meteorol. 2020;287:107951. doi: 10.1016/j.agrformet.2020.107951. DOI

Le Tacon F, et al. Climatic variations explain annual fluctuations in French Périgord black truffle wholesale markets but do not explain the decrease in black truffle production over the last 48 years. Mycorrhiza. 2014;24(Suppl 1):S115–S125. doi: 10.1007/s00572-014-0568-5. PubMed DOI

Václavík T, Kanaskie A, Hansen EM, Ohmann JL, Meentemeyer RK. Predicting potential and actual distribution of sudden oak death in Oregon: Prioritizing landscape contexts for early detection and eradication of disease outbreaks. For. Ecol. Manag. 2010;260:1026–1035. doi: 10.1016/j.foreco.2010.06.026. DOI

Streiblová E, Gryndlerová H, Valda S, Gryndler M. Tuber aestivum: hypogeous fungus neglected in the Czech Republic: a review. Czech Mycol. 2010;61:163–173. doi: 10.33585/cmy.61205. DOI

Gryndler M, et al. Detection of summer truffle (Tuber aestivum Vittad) in ectomycorrhizae and soil using specific primers. FEMS Microbiol. Lett. 2011;318:84–91. doi: 10.1111/j.1574-6968.2011.02243.x. PubMed DOI

Gryndler M, et al. Truffle biogeography: a case study revealing ecological niche separation of different Tuber species. Ecol. Evol. 2017;7:4275–4288. doi: 10.1002/ece3.3017. PubMed DOI PMC

Sánchez S, Ágreda T, Martín M, de Miguel AM, Barriuso J. Persistence and detection of black truffle ectomycorrhizas in plantations: comparison between two field detection methods. Mycorrhiza. 2014;24:39–46. doi: 10.1007/s00572-014-0560-0. PubMed DOI

Hilszczańska D, Sierota Z, Palenzona M. New Tuber species found in Poland. Mycorrhiza. 2008;18:223–226. doi: 10.1007/s00572-008-0175-4. PubMed DOI

Trnka M, et al. Expected changes in agroclimatic conditions in Central Europe. Clim. Change. 2011;108:261–289. doi: 10.1007/s10584-011-0025-9. DOI

Büntgen U, et al. Black truffle winter production depends on Mediterranean summer precipitation. Environ. Res. Lett. 2019;14:074004. doi: 10.1088/1748-9326/ab1880. DOI

Le Tacon, F., Delmas, J., Gleyze, R. & Bouchard, D. Influence du regime hydrique du sol et de la fertilisation sur la frutification de la truffe noire du Périgord (Tuber melanosporum Vitt.) dans le sud-est de la France. Acta Oecol-Oec. Appl.3, 291–306 (1982).

Trnka M, et al. Assessing the combined hazards of drought, soil erosion and local flooding on agricultural land: a Czech case study. Clim. Res. 2016;70:231–249. doi: 10.3354/cr01421. DOI

European Environment Agency. Climate change adaptation in the agriculture sector in Europe. (European Environment Agency, 2019).

NCA CR. Species database of nature protection. (Nature Conservation Agency of the Czech Republic, 2019).

San-Miguel-Ayanz, J. European Atlas of Forest Tree Species (Publication Office of the European Union, 2016).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...