Open-source data reveal how collections-based fungal diversity is sensitive to global change
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30937219
PubMed Central
PMC6426159
DOI
10.1002/aps3.1227
PII: APS31227
Knihovny.cz E-zdroje
- Klíčová slova
- collections data, diversity, fungi, macroecology, open‐source, phenology records,
- Publikační typ
- časopisecké články MeSH
PREMISE OF THE STUDY: Fungal diversity (richness) trends at large scales are in urgent need of investigation, especially through novel situations that combine long-term observational with environmental and remotely sensed open-source data. METHODS: We modeled fungal richness, with collections-based records of saprotrophic (decaying) and ectomycorrhizal (plant mutualistic) fungi, using an array of environmental variables across geographical gradients from northern to central Europe. Temporal differences in covariables granted insight into the impacts of the shorter- versus longer-term environment on fungal richness. RESULTS: Fungal richness varied significantly across different land-use types, with highest richness in forests and lowest in urban areas. Latitudinal trends supported a unimodal pattern in diversity across Europe. Temperature, both annual mean and range, was positively correlated with richness, indicating the importance of seasonality in increasing richness amounts. Precipitation seasonality notably affected saprotrophic fungal diversity (a unimodal relationship), as did daily precipitation of the collection day (negatively correlated). Ectomycorrhizal fungal richness differed from that of saprotrophs by being positively associated with tree species richness. DISCUSSION: Our results demonstrate that fungal richness is strongly correlated with land use and climate conditions, especially concerning seasonality, and that ongoing global change processes will affect fungal richness patterns at large scales.
Bavarian Forest National Park Freyunger Str 2 94481 Grafenau Germany
Department of Biological Sciences University of Bergen P O Box 7803 N 5020 Bergen Norway
Department of Botany and Biodiversity Research University of Vienna 1030 Vienna Austria
Department of Geography University of Cambridge CB2 3EN Cambridge United Kingom
Department of Soil Quality Wageningen University P O Box 47 6700 AA Wageningen The Netherlands
Global Change Research Centre and Masaryk University 613 00 Brno Czech Republic
Mycology Section Jodrell Laboratory Royal Botanic Garden Kew Richmond Surrey TW9 3DS United Kingdom
School of Biosciences Cardiff University Museum Avenue Cardiff CF10 3AX United Kingdom
Section for Genetics and Evolutionary Biology University of Oslo Blindernveien 31 0316 Oslo Norway
Swiss Federal Research Institute WSL CH 8903 Birmensdorf Switzerland
Zobrazit více v PubMed
Andrew, C. , Heegaard E., Kirk P. M., Bässler C., Heilmann‐Clausen J., Krisai‐Greilhuber I., Kuyper T. W., et al. 2017. Big data integration: Pan‐European fungal species observations’ assembly for addressing contemporary questions in ecology and global change biology. Fungal Biology Reviews 31: 88–98.
Andrew, C. , Heegaard E., Høiland K., Senn‐Irlet B., Kuyper T. W., Krisai‐Greilhuber I., Kirk P. M., et al. 2018a. Explaining European fungal fruiting phenology with climate variability. Ecology 99: 1306–1315. PubMed
Andrew, C. , Halvorsen R., Heegaard E., Kuyper T. W., Heilmann‐Clausen J., Krisai‐Greilhuber I., Bässler C., et al. 2018b. Continental‐scale macrofungal assemblage patterns correlate with climate, soil carbon and nitrogen deposition. Journal of Biogeography 45: 1942–1953.
Bellemain, E. , Carlsen T., Brochmann C., Coissac E., Taberlet P., and Kauserud H.. 2010. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiology 10: 189. PubMed PMC
Boddy, L. , Büntgen U., Egli S., Gange A. C., Heegaard E., Kirk P. M., Mohammad A., and Kauserud H.. 2014. Climate variation effects on fungal fruiting. Fungal Ecology 10: 20–33.
Bueno, C. G. , Moora M., Gerz M., Davison J., Öpik M., Pärtel M., Helm A., et al. 2017. Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Global Ecology and Biogeography 26: 690–699.
Colwell, R. K. , Rahbek C., and Gotelli N. J.. 2004. The mid‐domain effect and species richness patterns: What have we learned so far? American Naturalist 163: E1–E23. PubMed
Davison, J. , Moora M., Öpik M., Adholeya A., Ainsaar L., Bâ A., Burla S., et al. 2015. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349: 970–973. PubMed
Divíšek, J. , and Chytrý M.. 2018. High‐resolution and large‐extent mapping of plant species richness using vegetation‐plot databases. Ecological Indicators 89: 840–851.
Dormann, C. F. , Elith J., Bacher S., Buchmann C., Carl G., Carré G., Marquéz J. R. G., et al. 2013. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46.
Dvořák, D. , Vašutová M., Hofmeister J., Beran M., Hošek J., Běťák J., Burel J., and Deckerová H.. 2017. Macrofungal diversity patterns in central European forests affirm the key importance of old‐growth forests. Fungal Ecology 27: 145–154.
Fisher, M. C. , Henk D. A., Briggs C. J., Brownstein J. S., Madoff L. C., McCraw S. L., and Gurr S. J.. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484: 186–194. PubMed PMC
Gange, A. C. , Heegaard E., Boddy L., Andrew C., Kirk P., Halvorsen R., Kuyper T. W., et al. 2018. Trait‐dependent distributional shifts in fruiting of common British fungi. Ecography 41: 51–61.
García de León, D. , Davison J., Moora M., Öpik M., Feng H., Hiiesalu I., Jairus T., et al. 2018. Anthropogenic disturbance equalizes diversity levels in arbuscular mycorrhizal fungal communities. Global Change Biology 24: 2649–2659. PubMed
Geldmann, J. , Heilmann‐Clausen J., Holm T. E., Levinsky I., Markussen B., Olsen K., Rahbek C., and Tøttrup A. P.. 2016. What determines spatial bias in citizen science? Exploring four recording schemes with different proficiency requirements. Diversity and Distributions 22: 1139–1149.
Gerz, M. , Bueno C. G., Ozinga W. A., Zobel M., and Moora M.. 2018. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. Journal of Ecology 106: 254–264.
Halme, P. , Heilmann‐Clausen J., Rämä T., Kosonen T., and Kunttu P.. 2012. Monitoring fungal biodiversity–Towards an integrated approach. Fungal Ecology 5: 750–758.
Haylock, M. R. , Hofstra N., Tank A. K., Klok E. J., Jones P. D., and New M.. 2008. A European daily high‐resolution gridded data set of surface temperature and precipitation for 1950–2006. Journal of Geophysical Research: Atmospheres 113: D20.
Heegaard, E. , Gjerde I., and Sætersdal M.. 2013. Contribution of rare and common species to richness patterns at local scales. Ecography 36: 937–946.
Hempel, S. , Götzenberger L., Kühn I., Michalski S. G., Rillig M. C., Zobel M., and Moora M.. 2013. Mycorrhizas in the Central European flora: Relationships with plant life history traits and ecology. Ecology 94: 1389–1399. PubMed
Hibbett, D. , Abarenkov K., Kõljalg U., Öpik M., Chai B., Cole J., Wang Q., et al. 2016. Sequence‐based classification and identification of Fungi. Mycologia 108: 1049–1068. PubMed
Hijmans, R. J. , Cameron S. E., Parra J. L., Jones P. G., and Jarvis A.. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.
Hillebrand, H. 2004. On the generality of the latitudinal diversity gradient. American Naturalist 163: 192–211. PubMed
Holyoak, M. , and Heath S. K.. 2016. The integration of climate change, spatial dynamics, and habitat fragmentation: A conceptual overview. Integrative Zoology 11: 40–59. PubMed
Jetz, W. , and Rahbek C.. 2002. Geographic range size and determinants of avian species richness. Science 297: 1548–1551. PubMed
Jones, R. J. , Hiederer R., Rusco E., and Montanarella L.. 2005. Estimating organic carbon in the soils of Europe for policy support. European Journal of Soil Science 56: 655–671.
Kovats, R. S. , Valentini R., Bouwer L. M., Georgopoulou E., Jacob D., Martin E., Rounsevell M., and Soussana J.‐F.. 2014. Europe In Barros V. R., Field C. B., Dokken D. J., Mastrandrea M. D., Mach K. J., Bilir T. E., Chatterjee M., et al. [eds.], Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects, 1267–1326. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom.
Lavoie, C. 2013. Biological collections in an ever changing world: Herbaria as tools for biogeographical and environmental studies. Perspectives in Plant Ecology, Evolution and Systematics 15: 68–76.
Mair, L. , Jönsson M., Räty M., Bärring L., Strandberg G., Lämås T., and Snäll T.. 2018. Land use changes could modify future negative effects of climate change on old‐growth forest indicator species. Diversity and Distributions 1: 10.
Mauri, A. , Strona G., and San‐Miguel‐Ayanz J.. 2017. EU‐Forest, a high‐resolution tree occurrence dataset for Europe. Scientific Data 4: 160123. PubMed PMC
Meiyappan, P. , and Jain A. K.. 2012. Three distinct global estimates of historical land‐cover change and land‐use conversions for over 200 years. Frontiers of Earth Science 6: 122–139.
Mucha, J. , Peay K. G., Smith D. P., Reich P. B., Stefanski A., and Hobbie S. E.. 2018. Fungal community of boreal and temperate host species growing near their shared ecotonal range limits. Microbial Ecology 75: 348–363. PubMed PMC
Nguyen, N. H. , Song Z., Bates S. T., Branco S., Tedersoo L., Menke J., Schilling J. S., and Kennedy P. G.. 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology 20: 241–248.
Ordynets, A. , Heilmann‐Clausen J., Savchenko A., Bässler C., Volobuev S., Akulov O., Karadelev M., et al. 2018. Do plant‐based biogeographical regions shape aphyllophoroid fungal communities in Europe? Journal of Biogeography 45: 1182–1195.
Paillet, Y. , Bergès L., Hjältén J., Ódor P., Avon C., Bernhardt‐Römermann M., Bijlsma R. J., et al. 2010. Biodiversity differences between managed and unmanaged forests: Meta‐analysis of species richness in Europe. Conservation Biology 24: 101–112. PubMed
Panchen, Z. A. , Doubt J., Kharouba H. M., and Johnston M. O.. 2019. Patterns and biases in an Arctic herbarium specimen collection: Implications for phenological research. Applications in Plant Sciences 7(3): e1229. PubMed PMC
Park, I. , Jones A., and Mazer S. J.. 2019. PhenoForecaster: A software package for the prediction of flowering phenology. Applications in Plant Sciences 7(3): e1230. PubMed PMC
Pärtel, M. , Bennett J. A., and Zobel M.. 2016. Macroecology of biodiversity: Disentangling local and regional effects. New Phytologist 211: 404–410. PubMed
Peay, K. G. 2014. Back to the future: Natural history and the way forward in modern fungal ecology. Fungal Ecology 12: 4–9.
Peay, K. G. , von Sperber C., Cardarelli E., Toju H., Francis C. A., Chadwick O. A., and Vitousek P. M.. 2017. Convergence and contrast in the community structure of Bacteria, Fungi and Archaea along a tropical elevation–climate gradient. FEMS Microbiology Ecology 93: 10.1093/femsec/fix045. PubMed DOI
Pinzon, J. E. , and Tucker C. J.. 2014. A non‐stationary 1981–2012 AVHRR NDVI3g time series. Remote Sensing 6: 6929–6960.
R Core Team . 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: Website https://www.R-project.org/ [accessed 1 January 2015].
Runnel, K. , Tamm H., and Lõhmus A.. 2015. Surveying wood‐inhabiting fungi: Most molecularly detected polypore species form fruit‐bodies within short distances. Fungal Ecology 18: 93–99.
Schmidt, D. J. E. , Pouyat R., Szlavecz K., Setälä H., Kotze D. J., Yesilonis I., Cilliers S., et al. 2017. Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nature Ecology and Evolution 1: 0123. PubMed
Shi, L. L. , Mortimer P. E., Slik J. F., Zou X. M., Xu J., Feng W. T., and Qiao L.. 2014. Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Diversity 64: 305–315.
Soudzilovskaia, N. A. , Vaessen S., van't Zelfde M., and Raes N.. 2017. Global patterns of mycorrhizal distribution and their environmental drivers In Tedersoo L. [ed.], Biogeography of mycorrhizal symbiosis, 223–235. Springer, Cham, Switzerland.
Spake, R. , van der Linde S., Newton A. C., Suz L. M., Bidartondo M. I., and Doncaster C. P.. 2016. Similar biodiversity of ectomycorrhizal fungi in set‐aside plantations and ancient old‐growth broadleaved forests. Biological Conservation 194: 71–79. PubMed PMC
Talbot, J. M. , Bruns T. D., Taylor J. W., Smith D. P., Branco S., Glassman S. I., Erlandson S., et al. 2014. Endemism and functional convergence across the North American soil mycobiome. Proceedings of the National Academy of Sciences, USA 111: 6341–6346. PubMed PMC
Tedersoo, L. , and Lindahl B.. 2016. Fungal identification biases in microbiome projects. Environmental Microbiology Reports 8: 774–779. PubMed
Tedersoo, L. , Bahram M., Põlme S., Kõljalg U., Yorou N. S., Wijesundera R., Ruiz L. V., et al. 2014. Global diversity and geography of soil fungi. Science 346: 1256688. PubMed
Titeux, N. , Maes D., Van Daele T., Onkelinx T., Heikkinen R. K., Romo H., García‐Barros E., et al. 2017. The need for large‐scale distribution data to estimate regional changes in species richness under future climate change. Diversity and Distributions 23: 1393–1407.
Vallet, J. , Daniel H., Beaujouan V., and Rozé F.. 2008. Plant species response to urbanization: Comparison of isolated woodland patches in two cities of north‐western France. Landscape Ecology 23: 1205–1217.
van der Linde, S. , Suz L. M., Orme C. D. L., Cox F., Andreae H., Asi E., Atkinson B., et al. 2018. Environment and host as large‐scale controls of ectomycorrhizal fungi. Nature 558: 243–248. PubMed
van Strien, A. J. , Boomsluiter M., Noordeloos M. E., Verweij R. J., and Kuyper T. W.. 2018. Woodland ectomycorrhizal fungi benefit from large‐scale reduction in nitrogen deposition in the Netherlands. Journal of Applied Ecology 55: 290–298.
Wen, J. , Ickert‐Bond S. M., Appelhans M. S., Dorr L. J., and Funk V. A.. 2015. Collections‐based systematics: Opportunities and outlook for 2050. Journal of Systematics and Evolution 53: 477–488.
Willis, C. G. , Ellwood E. R., Primack R. B., Davis C. C., Pearson K. D., Gallinat A. S., Yost J. M., et al. 2017. Old plants, new tricks: Phenological research using herbarium specimens. Trends in Ecology and Evolution 32: 531–546. PubMed
Zuur A. F., Ieno E. N., Walker N. J., Saveliev A. A., and Smith G. M. [eds.]. 2009. Mixed effects models and extensions in ecology with R. Springer Science and Business Media, New York, New York, USA.