Altitudinal upwards shifts in fungal fruiting in the Alps

. 2020 Jan 29 ; 287 (1919) : 20192348. [epub] 20200122

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31964234

Many plant and animal species are changing their latitudinal and/or altitudinal distributions in response to climate change, but whether fungi show similar changes is largely unknown. Here, we use historical fungal fruit body records from the European Alps to assess altitudinal changes in fungal fruiting between 1960 and 2010. We observe that many fungal species are fruiting at significantly higher elevations in 2010 compared to 1960, and especially so among soil-dwelling fungi. Wood-decay fungi, being dependent on the presence of one or a few host trees, show a slower response. Species growing at higher elevations changed their altitudinal fruiting patterns significantly more than lowland species. Environmental changes in high altitudes may lead to proportionally stronger responses, since high-altitude species live closer to their physiological limit. These aboveground changes in fruiting patterns probably mirror corresponding shifts in belowground fungal communities, suggesting parallel shifts in important ecosystem functions.

Zobrazit více v PubMed

Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. System. 37, 637–669. (10.1146/annurev.ecolsys.37.091305.110100) DOI

Pecl GT, et al. 2017. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (10.1126/science.aai9214) PubMed DOI

Walther GR, Beissner S, Burga CA. 2005. Trends in the upward shift of alpine plants. J. Veg. Sci. 16, 541–548. (10.1111/j.1654-1103.2005.tb02394.x) DOI

Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026. (10.1126/science.1206432) PubMed DOI

Hickling R, Roy DB, Hill JK, Fox R, Thomas CD. 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biol. 12, 450–455. (10.1111/j.1365-2486.2006.01116.x) DOI

Hitch AT, Leberg PL. 2007. Breeding distributions of north American bird species moving north as a result of climate change. Conserv. Biol. 21, 534–539. (10.1111/j.1523-1739.2006.00609.x) PubMed DOI

Beckage B, Osborne B, Gavin DG, Pucko C, Siccama T, Perkins T. 2008. A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proc. Natl Acad. Sci. USA 105, 4197–4202. (10.1073/pnas.0708921105) PubMed DOI PMC

Du HB, Liu J, Li MH, Buntgen U, Yang Y, Wang L, Wu Z, He HS. 2018. Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China. Global Change Biol. 24, 1256–1266. (10.1111/gcb.13963) PubMed DOI

Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771. (10.1126/science.1156831) PubMed DOI

Rumpf SB, Hulber K, Klonner G, Moser D, Schutz M, Wessely J, Willner W, Zimmermann NE, Dullinger S. et al. 2018. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853. (10.1073/pnas.1713936115) PubMed DOI PMC

Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G. 2007. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biol. 13, 147–156. (10.1111/j.1365-2486.2006.01282.x) DOI

Buntgen U, Greuter L, Bollmann K, Jenny H, Liebhold A, Galván JD, Stenseth NC, Andrew C, Mysterud A. 2017. Elevational range shifts in four mountain ungulate species from the Swiss Alps. Ecosphere 8, e01761 (10.1002/ecs2.1761) DOI

Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR. 2008. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322, 261–264. (10.1126/science.1163428) PubMed DOI

Johnson DM, Buntgen U, Frank DC, Kausrud K, Haynes KJ, Liebhold AM, Esper J, Stenseth NC. 2010. Climatic warming disrupts recurrent Alpine insect outbreaks. Proc. Natl Acad. Sci. USA 107, 20 576–20 581. (10.1073/pnas.1010270107) PubMed DOI PMC

Konvicka M, Maradova M, Benes J, Fric Z, Kepka P. 2003. Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale. Global Ecol. Biogeogr. 12, 403–410. (10.1046/j.1466-822X.2003.00053.x) DOI

Crimmins SM, Dobrowski SZ, Greenberg JA, Abatzoglou JT, Mynsberge AR. 2011. Changes in climatic water balance drive downhill shifts in plant species' optimum elevations. Science 331, 324–327. (10.1126/science.1199040) PubMed DOI

Gehrig-Fasel J, Guisan A, Zimmermann NE. 2007. Tree line shifts in the Swiss Alps: climate change or land abandonment? J. Veg. Sci. 18, 571–582. (10.1111/j.1654-1103.2007.tb02571.x) DOI

Grytnes JA, et al. 2014. Identifying the driving factors behind observed elevational range shifts on European mountains. Global Ecol. Biogeogr. 23, 876–884. (10.1111/geb.12170) DOI

Guo F, Lenoir J, Bonebrake TC. 2018. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (10.1038/s41467-018-03786-9) PubMed DOI PMC

Urban MC, Tewksbury JJ, Sheldon KS. 2012. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B 279, 2072–2080. (10.1098/rspb.2011.2367) PubMed DOI PMC

Bonebrake TC, et al. 2018. Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science. Biol Rev. 93, 284–305. (10.1111/brv.12344) PubMed DOI

Clemmensen KE, et al. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618. (10.1126/science.1231923) PubMed DOI

Bahram M, Polme S, Koljalg U, Zarre S, Tedersoo L. 2012. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol. 193, 465–473. (10.1111/j.1469-8137.2011.03927.x) PubMed DOI

Geml J, Pastor N, Fernandez L, Pacheco S, Semenova TA, Becerra AG, Wicaksono CY, Nouhra ER. 2014. Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol. Ecol. 23, 2452–2472. (10.1111/mec.12765) PubMed DOI

Susan G, Woodward S, Taylor AFS. 2015. Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient. New Phytol. 206, 1145–1155. (10.1111/nph.13315) PubMed DOI

Lenoir J, Svenning JC. 2015. Climate-related range shifts: a global multidimensional synthesis and new research directions. Ecography 38, 15–28. (10.1111/ecog.00967) DOI

Nguyen NH, Song ZW, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248. (10.1016/j.funeco.2015.06.006) DOI

Bürkner PD. 2017. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28. (10.18637/jss.v080.i01) DOI

R Core Team. 2019. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; See https://www.R-project.org/

Carpenter B, et al. 2017. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32. (10.18637/jss.v076.i01) PubMed DOI PMC

Auer I, et al. 2007. HISTALP: historical instrumental climatological surface time series of the Greater Alpine Region. Int. J. Climatol. 27, 17–46. (10.1002/joc.1377) DOI

Bertrand R, Lenoir J, Piedallu C, Riofrío-Dillon G, de Ruffray P, Vidal C, Pierrat JC, Gégout JC. 2011. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520. (10.1038/nature10548) PubMed DOI

Bertrand R, Riofrío-Dillon G, Lenoir J, Drapier J, de Ruffray P, Gégout J-C, Loreau M. 2016. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (10.1038/ncomms12643) PubMed DOI PMC

Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M. 2014. 21st century climate change in the European Alps: a review. Sci. Total Environ. 493, 1138–1151. (10.1016/j.scitotenv.2013.07.050) PubMed DOI

Verheyen K, et al. 2018. Observer and relocation errors matter in resurveys of historical vegetation plots. J. Veg. Sci. 29, 812–823. (10.1111/jvs.12673) DOI

Kapfer J, Hédl R, Jurasinski G, Kopecký M, Schei FH, Grytnes J-A. 2016. Resurveying historical vegetation data: opportunities and challenges. Appl. Veg. Sci. 20, 164–171. (10.1111/avsc.12269) PubMed DOI PMC

Kauserud H, et al. 2012. Warming-induced shift in European mushroom fruiting phenology. Proc. Natl Acad. Sci. USA 109, 14 488–14 493. (10.1073/pnas.1200789109) PubMed DOI PMC

Lindahl BD, et al. 2013. Fungal community analysis by high-throughput sequencing of amplified markers: a user's guide. New Phytol. 199, 288–299. (10.1111/nph.12243) PubMed DOI PMC

Diez J, Kauserud H, Andrew C, Haegaard E, Krisai-Greilhuber I, Senn-Irlet B, Høiland K, Egli S, Büntgen U. 2020. Data from: Altitudinal upwards shifts in fungal fruiting in the Alps. Dryad Digital Repository. (10.6086/D1TQ14) PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace