Altitudinal upwards shifts in fungal fruiting in the Alps
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31964234
PubMed Central
PMC7015340
DOI
10.1098/rspb.2019.2348
Knihovny.cz E-zdroje
- Klíčová slova
- altitudinal gradient, distributional shifts, ecological response, fungal fruiting, fungi, global warming,
- MeSH
- ekosystém MeSH
- houby fyziologie MeSH
- klimatické změny MeSH
- nadmořská výška * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Many plant and animal species are changing their latitudinal and/or altitudinal distributions in response to climate change, but whether fungi show similar changes is largely unknown. Here, we use historical fungal fruit body records from the European Alps to assess altitudinal changes in fungal fruiting between 1960 and 2010. We observe that many fungal species are fruiting at significantly higher elevations in 2010 compared to 1960, and especially so among soil-dwelling fungi. Wood-decay fungi, being dependent on the presence of one or a few host trees, show a slower response. Species growing at higher elevations changed their altitudinal fruiting patterns significantly more than lowland species. Environmental changes in high altitudes may lead to proportionally stronger responses, since high-altitude species live closer to their physiological limit. These aboveground changes in fruiting patterns probably mirror corresponding shifts in belowground fungal communities, suggesting parallel shifts in important ecosystem functions.
County Governor of Rogaland 4001 Stavanger Norway
Department of Botany and Biodiversity Research University of Vienna 1030 Vienna Austria
Department of Botany and Plant Sciences University of California Riverside USA
Department of Geography Faculty of Science Masaryk University 613 00 Brno Czech Republic
Department of Geography University of Cambridge Cambridge CB2 3EN UK
Global Change Research Institute of the Czech Academy of Sciences 603 00 Brno Czech Republic
Section for Genetics and Evolutionary Biology University of Oslo Blindernveien 31 0316 Oslo Norway
Swiss Federal Research Institute WSL CH 8903 Birmensdorf Switzerland
Zobrazit více v PubMed
Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. System. 37, 637–669. (10.1146/annurev.ecolsys.37.091305.110100) DOI
Pecl GT, et al. 2017. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (10.1126/science.aai9214) PubMed DOI
Walther GR, Beissner S, Burga CA. 2005. Trends in the upward shift of alpine plants. J. Veg. Sci. 16, 541–548. (10.1111/j.1654-1103.2005.tb02394.x) DOI
Chen IC, Hill JK, Ohlemuller R, Roy DB, Thomas CD. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026. (10.1126/science.1206432) PubMed DOI
Hickling R, Roy DB, Hill JK, Fox R, Thomas CD. 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biol. 12, 450–455. (10.1111/j.1365-2486.2006.01116.x) DOI
Hitch AT, Leberg PL. 2007. Breeding distributions of north American bird species moving north as a result of climate change. Conserv. Biol. 21, 534–539. (10.1111/j.1523-1739.2006.00609.x) PubMed DOI
Beckage B, Osborne B, Gavin DG, Pucko C, Siccama T, Perkins T. 2008. A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proc. Natl Acad. Sci. USA 105, 4197–4202. (10.1073/pnas.0708921105) PubMed DOI PMC
Du HB, Liu J, Li MH, Buntgen U, Yang Y, Wang L, Wu Z, He HS. 2018. Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China. Global Change Biol. 24, 1256–1266. (10.1111/gcb.13963) PubMed DOI
Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771. (10.1126/science.1156831) PubMed DOI
Rumpf SB, Hulber K, Klonner G, Moser D, Schutz M, Wessely J, Willner W, Zimmermann NE, Dullinger S. et al. 2018. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853. (10.1073/pnas.1713936115) PubMed DOI PMC
Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G. 2007. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biol. 13, 147–156. (10.1111/j.1365-2486.2006.01282.x) DOI
Buntgen U, Greuter L, Bollmann K, Jenny H, Liebhold A, Galván JD, Stenseth NC, Andrew C, Mysterud A. 2017. Elevational range shifts in four mountain ungulate species from the Swiss Alps. Ecosphere 8, e01761 (10.1002/ecs2.1761) DOI
Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR. 2008. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322, 261–264. (10.1126/science.1163428) PubMed DOI
Johnson DM, Buntgen U, Frank DC, Kausrud K, Haynes KJ, Liebhold AM, Esper J, Stenseth NC. 2010. Climatic warming disrupts recurrent Alpine insect outbreaks. Proc. Natl Acad. Sci. USA 107, 20 576–20 581. (10.1073/pnas.1010270107) PubMed DOI PMC
Konvicka M, Maradova M, Benes J, Fric Z, Kepka P. 2003. Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale. Global Ecol. Biogeogr. 12, 403–410. (10.1046/j.1466-822X.2003.00053.x) DOI
Crimmins SM, Dobrowski SZ, Greenberg JA, Abatzoglou JT, Mynsberge AR. 2011. Changes in climatic water balance drive downhill shifts in plant species' optimum elevations. Science 331, 324–327. (10.1126/science.1199040) PubMed DOI
Gehrig-Fasel J, Guisan A, Zimmermann NE. 2007. Tree line shifts in the Swiss Alps: climate change or land abandonment? J. Veg. Sci. 18, 571–582. (10.1111/j.1654-1103.2007.tb02571.x) DOI
Grytnes JA, et al. 2014. Identifying the driving factors behind observed elevational range shifts on European mountains. Global Ecol. Biogeogr. 23, 876–884. (10.1111/geb.12170) DOI
Guo F, Lenoir J, Bonebrake TC. 2018. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (10.1038/s41467-018-03786-9) PubMed DOI PMC
Urban MC, Tewksbury JJ, Sheldon KS. 2012. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B 279, 2072–2080. (10.1098/rspb.2011.2367) PubMed DOI PMC
Bonebrake TC, et al. 2018. Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science. Biol Rev. 93, 284–305. (10.1111/brv.12344) PubMed DOI
Clemmensen KE, et al. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618. (10.1126/science.1231923) PubMed DOI
Bahram M, Polme S, Koljalg U, Zarre S, Tedersoo L. 2012. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytol. 193, 465–473. (10.1111/j.1469-8137.2011.03927.x) PubMed DOI
Geml J, Pastor N, Fernandez L, Pacheco S, Semenova TA, Becerra AG, Wicaksono CY, Nouhra ER. 2014. Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Mol. Ecol. 23, 2452–2472. (10.1111/mec.12765) PubMed DOI
Susan G, Woodward S, Taylor AFS. 2015. Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient. New Phytol. 206, 1145–1155. (10.1111/nph.13315) PubMed DOI
Lenoir J, Svenning JC. 2015. Climate-related range shifts: a global multidimensional synthesis and new research directions. Ecography 38, 15–28. (10.1111/ecog.00967) DOI
Nguyen NH, Song ZW, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248. (10.1016/j.funeco.2015.06.006) DOI
Bürkner PD. 2017. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28. (10.18637/jss.v080.i01) DOI
R Core Team. 2019. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; See https://www.R-project.org/
Carpenter B, et al. 2017. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32. (10.18637/jss.v076.i01) PubMed DOI PMC
Auer I, et al. 2007. HISTALP: historical instrumental climatological surface time series of the Greater Alpine Region. Int. J. Climatol. 27, 17–46. (10.1002/joc.1377) DOI
Bertrand R, Lenoir J, Piedallu C, Riofrío-Dillon G, de Ruffray P, Vidal C, Pierrat JC, Gégout JC. 2011. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520. (10.1038/nature10548) PubMed DOI
Bertrand R, Riofrío-Dillon G, Lenoir J, Drapier J, de Ruffray P, Gégout J-C, Loreau M. 2016. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (10.1038/ncomms12643) PubMed DOI PMC
Gobiet A, Kotlarski S, Beniston M, Heinrich G, Rajczak J, Stoffel M. 2014. 21st century climate change in the European Alps: a review. Sci. Total Environ. 493, 1138–1151. (10.1016/j.scitotenv.2013.07.050) PubMed DOI
Verheyen K, et al. 2018. Observer and relocation errors matter in resurveys of historical vegetation plots. J. Veg. Sci. 29, 812–823. (10.1111/jvs.12673) DOI
Kapfer J, Hédl R, Jurasinski G, Kopecký M, Schei FH, Grytnes J-A. 2016. Resurveying historical vegetation data: opportunities and challenges. Appl. Veg. Sci. 20, 164–171. (10.1111/avsc.12269) PubMed DOI PMC
Kauserud H, et al. 2012. Warming-induced shift in European mushroom fruiting phenology. Proc. Natl Acad. Sci. USA 109, 14 488–14 493. (10.1073/pnas.1200789109) PubMed DOI PMC
Lindahl BD, et al. 2013. Fungal community analysis by high-throughput sequencing of amplified markers: a user's guide. New Phytol. 199, 288–299. (10.1111/nph.12243) PubMed DOI PMC
Diez J, Kauserud H, Andrew C, Haegaard E, Krisai-Greilhuber I, Senn-Irlet B, Høiland K, Egli S, Büntgen U. 2020. Data from: Altitudinal upwards shifts in fungal fruiting in the Alps. Dryad Digital Repository. (10.6086/D1TQ14) PubMed DOI PMC
Fungal communities in soils under global change
Predicted climate change will increase the truffle cultivation potential in central Europe
Altitudinal upwards shifts in fungal fruiting in the Alps