Resurveying historical vegetation data - opportunities and challenges
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
278065
European Research Council - International
PubMed
30245580
PubMed Central
PMC6145442
DOI
10.1111/avsc.12269
Knihovny.cz E-zdroje
- Klíčová slova
- Environmental change, long-term vegetation dynamics, non-permanent plots, non-traceable plots, observer bias, pseudo-turnover, quasi-permanent plots, relocation error, semi-permanent plots, vegetation resampling,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant error to temporal change. These errors may have major implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists. MATERIAL & METHODS: Vegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental-change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarise the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research. RESULTS AND CONCLUSIONS: Resampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias, and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) keep a high level of experience of the observers to keep observer bias low; and (v) edit and standardise datasets before analyses.
Department of Biology University of Bergen Thormøhlensgate 53A 5020 Bergen Norway
Department of Botany Palacký University Šlechtitelů 27 78371 Olomouc Czech Republic
Institute of Botany The Czech Academy of Sciences Lidická 25 27 60200 Brno Czech Republic
Landscape Ecology and Site Evaluation University of Rostock 18059 Rostock Germany
Norwegian Institute of Bioeconomy Research Fanaflaten 4 5244 Fana Norway
Norwegian Institute of Bioeconomy Research Holtveien 66 9016 Tromsø Norway
Zobrazit více v PubMed
Archaux F, Gosselin F, Berg L, Chevalier R. Effects of sampling time, species richness and observer on the exhaustiveness of plant censuses. Journal of Vegetation Science. 2006;17:299–306.
Bakker JP, Olff H, Willems JH, Zobel M. Why do we need permanent plots in the study of long-term vegetation dynamics? Journal of Vegetation Science. 1996;7:147–156.
Bernhardt-Römermann M, Baeten L, Craven D, De Frenne P, Hédl R, Lenoir J, Bert D, Brunet J, Chudomelová M, Decocq G, Dierschke H, et al. Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Global Change Biology. 2015;21:3726–3737. PubMed PMC
Bertrand R, Lenoir J, Piedallu C, Riofrío-Dillon G, de Ruffray P, Vidal C, Pierrat J-C, Gégout J-C. Changes in plant community composition lag behind climate warming in lowland forests. Nature. 2011;479:517–520. PubMed
Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, et al. Global assessment of nitrogen-deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications. 2010;20(1):30–59. PubMed
Braun-Blanquet J. Pflanzensoziologie. Grundzüge der Vegetationskunde. Springer; Wien: 1964.
Burg S, Rixen C, Stöckli V, Wipf S. Observation bias and its causes in botanical surveys on high-alpine summits. Journal of Vegetation Science. 2015;26:191–200.
Bühler C, Roth T. Spread of common species results in local-scale floristic homogenization in grassland of Switzerland. Diversity and Distributions. 2011;17:1089–1098.
Chapin FS, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA. Responses of arctic Tundra to experimental and observed changes in climate. Ecology. 1995;76(3):694–711.
Chytrý M, Danihelka J. Long-term changes in the field layer of oak and oak-hornbeam forests under the impact of deer and mouflon. Folia Geobotanica et Phytotaxonomica. 1993;28:225–245.
Chytrý M, Tichý L, Hennekens SM, Schaminée JHJ. Assessing vegetation change using vegetation-plot databases: a risky business. Applied Vegetation Science. 2014;17:32–41.
Cleland EE, Collins SL, Dickson TL, Farrer EC, Gross KL, Gherardi LA, Hallett LM, Hobbs RJ, Hsu JS, Turnbull L, Suding KN. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology. 2013;94:1687–1696. PubMed
Daniëls FJA, De Molenaar JG, Chytrý M, Tichý L. Vegetation change in Southeast Greenland? Tasiilaq revisited after 40 years. Applied Vegetation Science. 2011;14:230–241.
Dengler J, Jansen F, Glöckler F, Peet RK, De Cáceres M, Chytrý M, Ewald J, Oldeland J, Lopez-Gonzalez G, Finckh M, Mucina L, et al. The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. Journal of Vegetation Science. 2011;22:582–597.
Diekmann M, Dupre C. Acidification and eutrophication of deciduous forests in northwestern Germany demonstrated by indicator species analysis. Journal of Vegetation Science. 1997;8:855–864.
Du Rietz GE. Zur methodologischen Grundlage der modernen Pflanzensoziologie. Dissertation, University of Uppsala; Uppsala: 1921.
Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica. 1992;18:1–258.
Felde VA, Kapfer J, Grytnes J-A. Upward shift in elevational plant species ranges in Sikkilsdalen, central Norway. Ecography. 2012;35(10):922–932.
Fischer M, Stöcklin J. Local extinctions of plants in remnants of extensively used calcareous grasslands 1950-1985. Conservation Biology. 1997;11(3):727–737.
Fischer A. Floristical changes in Central European forest ecosystems during the past decades as an expression of changing site conditions. EFI-Proceedings. 1999;27:53–64.
Fischer A, Klotz S. Zusammenstellung von Begriffen, die in der Vegetations-Dauerbeobachtung eine zentrale Rolle spielen. Tuexenia. 1999;19:10–12.
Grabherr G, Gottfried M, Pauli H. Climate effects on mountain plants. Nature. 1994;369(6480):448. PubMed
Grytnes J-A, Kapfer J, Jurasinski G, Birks HH, Henriksen H, Klanderud K, Odland A, Ohlson M, Wipf S, Birks HJB. Identifying the driving factors behind observed elevational range shifts on European mountains. Global Ecology and Biogeography. 2014;23:876–884.
Gunnarsson U, Rydin H, Sjors H. Diversity and pH changes after 50 years on the boreal mire Skattlössbergs Stormosse, Central Sweden. Journal of Vegetation Science. 2000;11:277–286.
Harrison S, Damschen EI, Grace JB. Ecological contingency in the effects of climatic warming on forest herb communities. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:19362–19367. PubMed PMC
Hédl R. Vegetation of beech forests in the Rychlebske Mountains, Czech Republic, re-inspected after 60 years with assessment of environmental changes. Plant Ecology. 2004;170:243–265.
Hédl R, Kopecký M, Komárek J. Half a century of succession in a temperate oakwood: from species-rich community to mesic forest. Diversity and Distributions. 2010;16:267–276.
Kapfer J, Grytnes J-A, Gunnarsson U, Birks HJB. Fine-scale changes in vegetation composition in a boreal mire over 50 years. Journal of Ecology. 2011;99:1179–1189.
Keith Sa, Newton AC, Morecroft MD, Bealey CE, Bullock JM. Taxonomic homogenization of woodland plant communities over 70 years. Proceedings of the Royal Society B: Biological Sciences. 2009;276:3539–3544. PubMed PMC
Kelly AE, Goulden ML. Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:11823–22826. PubMed PMC
Klanderud K, Birks HJB. Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. The Holocene. 2003;13:1–6.
Koch M, Jurasinski G. Four decades of vegetation development in a percolation mire complex following intensive drainage and abandonment. Plant Ecology & Diversity. 2015;8:49–60.
Kopecký M, Hédl R, Szabó P. Non-random extinctions dominate plant community changes in abandoned coppices. Journal of Applied Ecology. 2013;50:79–87. PubMed PMC
Kopecký M, Macek M. Vegetation resurvey is robust to plot location uncertainty. Diversity and Distributions. 2015;21:322–330. PubMed PMC
Landolt E, Bäumler B, Erhardt A, Hegg O, Klötzli F, Lämmler W, Nobis M, Rudmann-Maurer K, Schweingruber FH, Theurillat J-P, Urmi E, et al. Flora Indicativa – Ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Haupt; Bern, Stuttgart, Wien: 2010.
Lawesson JE. A concept for vegetation studies and monitoring in the Nordic Countries. Nordic Council of Ministers; Copenhagen: 2000.
Lenoir J, Gégout JC, Marquet PA, Ruffray P, Brisse H. A significant upward shift in plant species optimum elevation during the 20th century. Science. 2008;320:1768–1771. PubMed
Pauli H, Gottfried M, Dullinger S, Abdaladze O, Akhalkatsi M, Alonso JLB, Coldea G, Dick J, Erschbamer B, Fern B, Calzado R, et al. Recent plant diversity changes on Europe’s mountain summits. Science. 2012;336:353–355. PubMed
Persson S. Succession in a south Swedish deciduous wood: a numerical approach. Vegetatio. 1980;43:103–122.
Ross LC, Woodin SJ, Hester A, Thompson DBA, Birks HJB. How important is plot relocation accuracy when interpreting re-visitation studies of vegetation change? Plant Ecology & Diversity. 2010;3:1–8.
Schaminée JHJ, Hennekens SM, Chytrý M, Rodwell JS. Vegetation-plot data and databases in Europe: an overview. Preslia. 2009;81:173–185.
Scott WA, Hallam CJ. Assessing species misidentification rates through quality assurance of vegetation monitoring. Plant Ecology. 2002;165:101–115.
Šebesta J, Šamonil P, Lacina J, Oulehle F, Houška J, Buček A. Acidification of primeval forests in the Ukraine Carpathians: vegetation and soil changes over six decades. Forest Ecology and Management. 2011;262:1265–1279.
Silvertown J, Poulton P, Johnston E, Edwards G, Heard M, Biss PM. The Park Grass experiment 1856-2006: its contribution to ecology. Journal of Ecology. 2006;94:801–814.
Tape K, Sturm M, Racine C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Global Change Biology. 2006;12:686–702.
Ter Braak CJF, van Dam H. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia. 1989;178:209–223.
Thimonier A, Dupouey JL, Bost F, Becker M. Simultaneous eutrophication and acidification of a forest ecosystem in North-East France. New Phytologist. 1994;126:533–539. PubMed
Van Calster H, Baeten L, Verheyen K, de Keersmaeker L, Dekeyser S, Rogister JE, Hermy M. Diverging effects of overstorey conversion scenarios on the understorey vegetation in a former coppice-with-standards forest. Forest Ecology and Management. 2008;256:519–528.
Van den Berg LJL, Vergeer P, Rich TCG, Smart SM, Guest D, Ashmore MR. Direct and indirect effects of nitrogen deposition on species composition change in calcareous grasslands. Global Change Biology. 2011;17:1871–1883.
Vellend M, Baeten L, Myers-Smith IH, Elmendorf SC, Beauséjour R, Brown CD, de Frenne P, Verheyen K, Wipf S. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proceedings of the National Academy of Sciences of the United States of America. 2013;110:19456–19459. PubMed PMC
Verheyen K, Baeten L, De Frenne P, Bernhardt-Römermann M, Brunet J, Cornelis J, Decocq G, Dierschke H, Eriksson O, Hédl R, Heinken T, et al. Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. Journal of Ecology. 2012;100:352–365.
Vittoz P, Guisan A. How reliable is the monitoring of permanent vegetation plots? A test with multiple observers. Journal of Vegetation Science. 2007;18:413–422.
Vymazalová M, Axmanová I, Tichý L. Effect of intra-seasonal variability on vegetation data. Journal of Vegetation Science. 2012;23:978–984.
Waller DM, Amatangelo KL, Johnson S, Rogers DA. Wisconsin Vegetation Database – plant community survey and resurvey data from the Wisconsin Plant Ecology Laboratory. Biodiversity & Ecology. 2012;4:255–264.
Walther G-R, Berge S, Sykes MT. An ecological ‘footprint’ of climate change. Proceedings of the Royal Society. 2005;272:1427–1432. PubMed PMC
Willis KJ, Birks HJB. What is natural? The need for a long-term perspective in biodiversity conservation. Science. 2006;314:1261–1265. PubMed
Wilson SD, Nilsson C. Arctic alpine vegetation change over 20 years. Global Change Biology. 2009;15:1676–1684.
Wipf S, Stöckli V, Herz K, Rixen C. The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecology & Diversity. 2013;6:447–455.
Altitudinal upwards shifts in fungal fruiting in the Alps
The paradox of long-term ungulate impact: increase of plant species richness in a temperate forest