Half a Century of Temperate Non-Forest Vegetation Changes: No Net Loss in Species Richness, but Considerable Shifts in Taxonomic and Functional Composition
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
101052342
European Commission
532411638
Deutsche Forschungsgemeinschaft
MUNI/A/1489/2023
Masarykova Univerzita
SS73020008
Technology Agency of the Czech Republic
RVO 67985939
Akademie Věd České Republiky
PubMed
39853920
PubMed Central
PMC11758476
DOI
10.1111/gcb.70030
Knihovny.cz E-zdroje
- Klíčová slova
- biodiversity change, drought, eutrophication, functional traits, habitat specialists, mesophilization, succession, vascular plants,
- MeSH
- biodiverzita * MeSH
- ekosystém * MeSH
- klimatické změny MeSH
- rostliny * klasifikace MeSH
- zachování přírodních zdrojů MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
In recent decades, global change and local anthropogenic pressures have severely affected natural ecosystems and their biodiversity. Although disentangling the effects of these factors is difficult, they are reflected in changes in the functional composition of plant communities. We present a comprehensive, large-scale analysis of long-term changes in plant communities of various non-forest habitat types in the Czech Republic based on 1154 vegetation-plot time series from 53 resurvey studies comprising 3909 vegetation-plot records. We focused not only on taxonomic diversity but also on the functional characteristics of communities. Species richness of most habitat types increased over time, and taxonomic and functional community composition shifted significantly. Habitat specialists and threatened species became less represented in plant communities, indicating a decline in habitat quality. The spread of trees, shrubs, tall herbaceous plants, strong competitors, and nutrient-demanding species in all non-forest habitats, coupled with the decline of light-demanding species, suggests an effect of eutrophication and natural succession following the abandonment of traditional management. Moreover, we identified specific trends in certain habitats. In wetlands, springs, and mires, moisture-demanding species decreased, probably due to drainage, river regulations, and increasing drought resulting from climate change. Dry grasslands, ruderal, weed, sand, and shallow-soil vegetation became more mesic, and successional processes were most pronounced in these communities, suggesting a stronger effect of abandonment of traditional management and eutrophication. In alpine and subalpine vegetation, meadows and mesic pastures, and heathlands, insect-pollinated species declined, and the proportion of grasses increased. Overall, these functional changes provide deep insights into the underlying drivers and help conservationists take appropriate countermeasures.
Department of Biology Faculty of Science University of Hradec Králové Hradec Králové Czech Republic
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
Department of Paleoecology Institute of Botany Czech Academy of Sciences Brno Czech Republic
Department of Plant Biology Mendel University in Brno Brno Czech Republic
Faculty of Environmental Sciences Czech University of Life Sciences Prague Czech Republic
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
Zobrazit více v PubMed
Axmanová, I. , Chytrý K., Boublík K., et al. 2024. “Catalogue of Expansive Species of the Czech Flora.” Preslia 96, no. 4: 299–327.
Barnosky, A. D. , Matzke N., Tomiya S., et al. 2011. “Has the Earth's Sixth Mass Extinction Already Arrived?” Nature 471, no. 7336: 51–57. 10.1038/nature09678. PubMed DOI
Batáry, P. , Báldi A., Sárospataki M., et al. 2010. “Effect of Conservation Management on Bees and Insect‐Pollinated Grassland Plant Communities in Three European Countries.” Agriculture, Ecosystems & Environment 136, no. 1: 35–39. 10.1016/j.agee.2009.11.004. DOI
Bauerkämper, A. , and Iordachi C.. 2014. The Collectivization of Agriculture in Communist Eastern Europe, edited by Bauerkämper A. and Iordachi C.. New York, NY: Central European University Press.
Bergamini, A. , Peintinger M., Fakheran S., Moradi H., Schmid B., and Joshi J.. 2009. “Loss of Habitat Specialists Despite Conservation Management in Fen Remnants 1995–2006.” Perspectives in Plant Ecology, Evolution and Systematics 11, no. 1: 65–79. 10.1016/j.ppees.2008.10.001. DOI
Bernhardt‐Römermann, M. , Baeten L., Craven D., et al. 2015. “Drivers of Temporal Changes in Temperate Forest Plant Diversity Vary Across Spatial Scales.” Global Change Biology 21, no. 10: 3726–3737. 10.1111/gcb.12993. PubMed DOI PMC
Bičík, I. , Kupková L., Jeleček L., et al. 2015. Land Use Changes in the Czech Republic 1845–2010, 95–170. Cham, Switzerland: Springer International Publishing. 10.1007/978-3-319-17671-0_6. DOI
Biesmeijer, J. C. , Roberts S. P. M., Reemer M., et al. 2006. “Parallel Declines in Pollinators and Insect‐Pollinated Plants in Britain and The Netherlands.” Science 313, no. 5785: 351–354. 10.1126/science.1127863. PubMed DOI
Blažek, P. , and Lepš J.. 2016. “Symbiotic Nitrogen Fixation.” [Dataset]. www.pladias.cz.
Blowes, S. A. , Supp S. R., Antão L. H., et al. 2019. “The Geography of Biodiversity Change in Marine and Terrestrial Assemblages.” Science 366, no. 6463: 339–345. 10.1126/science.aaw1620. PubMed DOI
Boch, S. , Bedolla A., Ecker K. T., et al. 2019. “Indicator Values Suggest Decreasing Habitat Quality in Swiss Dry Grasslands and Are Robust to Relocation Error.” Tuexenia 39: 315–334. 10.14471/2019.39.010. DOI
Boch, S. , Küchler H., Küchler M., et al. 2022. “Observer‐Driven Pseudoturnover in Vegetation Monitoring Is Context‐Dependent but Does Not Affect Ecological Inference.” Applied Vegetation Science 25, no. 3: e12669. 10.1111/avsc.12669. DOI
Ceballos, G. , Ehrlich P. R., Barnosky A. D., García A., Pringle R. M., and Palmer T. M.. 2015. “Accelerated Modern Human–Induced Species Losses: Entering the Sixth Mass Extinction.” Science Advances 1, no. 5: e1400253. 10.1126/sciadv.1400253. PubMed DOI PMC
Chrtek, J., Jr. 2018. “Generative Reproduction Type.” [Dataset]. www.pladias.cz.
Chytrý, M. , Danihelka J., Kaplan Z., and Pyšek P.. 2017. Flora and Vegetation of the Czech Republic. Cham, Switzerland: Springer International Publishing. 10.1007/978-3-319-63181-3. DOI
Chytrý, M. , Danihelka J., Kaplan Z., et al. 2021. “Pladias Database of the Czech Flora and Vegetation.” Preslia 93, no. 1: 1–87. 10.23855/preslia.2021.001. DOI
Chytrý, M. , Hájek M., Kočí M., et al. 2019. “Red List of Habitats of the Czech Republic.” Ecological Indicators 106: 105446. 10.1016/j.ecolind.2019.105446. DOI
Chytrý, M. , Tichý L., Boublík K., et al. 2020. “CzechVeg‐ESy: Expert System for Automatic Classification of Vegetation Plots from the Czech Republic (Version v1‐2020‐01‐12).” [Dataset]. Zenodo. 10.5281/zenodo.3605562. DOI
Chytrý, M. , Tichý L., Dřevojan P., Sádlo J., and Zelený D.. 2018. “Ellenberg‐Type Indicator Values for the Czech Flora.” Preslia 90, no. 2: 83–103. 10.23855/preslia.2018.083. DOI
Chytrý, M. , Tichý L., Hennekens S. M., and Schaminée J. H. J.. 2014. “Assessing Vegetation Change Using Vegetation‐Plot Databases: A Risky Business.” Applied Vegetation Science 17, no. 1: 32–41. 10.1111/avsc.12050. DOI
Czech Hydrometeorological Institute . 2024a. “Territorial Air Temperature.” [Dataset]. https://www.chmi.cz/historicka‐data/pocasi/uzemni‐teploty.
Czech Hydrometeorological Institute . 2024b. “Territorial Precipitation.” [Dataset]. https://www.chmi.cz/historicka‐data/pocasi/uzemni‐srazky.
Czortek, P. , Eycott A. E., Grytnes J.‐A., Delimat A., Kapfer J., and Jaroszewicz B.. 2018. “Effects of Grazing Abandonment and Climate Change on Mountain Summits Flora: A Case Study in the Tatra Mts.” Plant Ecology 219, no. 3: 261–276. 10.1007/s11258-018-0794-6. DOI
Diekmann, M. , Andres C., Becker T., et al. 2019. “Patterns of Long‐Term Vegetation Change Vary Between Different Types of Semi‐Natural Grasslands in Western and Central Europe.” Journal of Vegetation Science 30, no. 2: 187–202. 10.1111/jvs.12727. DOI
Diekmann, M. , Jandt U., Alard D., et al. 2014. “Long‐Term Changes in Calcareous Grassland Vegetation in North‐Western Germany—No Decline in Species Richness, but a Shift in Species Composition.” Biological Conservation 172: 170–179. 10.1016/j.biocon.2014.02.038. DOI
Dornelas, M. , Gotelli N. J., McGill B., et al. 2014. “Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss.” Science 344, no. 6181: 296–299. 10.1126/science.1248484. PubMed DOI
Dornelas, M. , Gotelli N. J., Shimadzu H., Moyes F., Magurran A. E., and McGill B. J.. 2019. “A Balance of Winners and Losers in the Anthropocene.” Ecology Letters 22, no. 5: 847–854. 10.1111/ele.13242. PubMed DOI
Dostálek, J. , and Frantík T.. 2011. “Response of Dry Grassland Vegetation to Fluctuations in Weather Conditions: A 9‐Year Case Study in Prague (Czech Republic).” Biologia 66, no. 5: 837–847. 10.2478/s11756-011-0079-1. DOI
Dřevojan, P. 2020. “Growth Form.” [Dataset]. www.pladias.cz.
Duprè, C. , Stevens C. J., Ranke T., et al. 2010. “Changes in Species Richness and Composition in European Acidic Grasslands Over the Past 70 Years: The Contribution of Cumulative Atmospheric Nitrogen Deposition.” Global Change Biology 16: 344–357. 10.1111/j.1365-2486.2009.01982.x. DOI
Durka, W. 2002. “Blüten– und Reproduktionsbiologie.” In BIOLFLOR—Eine Datenbank mit Biologisch‐ökologischen Merkmalen zur Flora von Deutschland, edited by Klotz S. and Kühn I., 133–175.
Ehlers, B. K. , Bataillon T., and Damgaard C. F.. 2021. “Ongoing Decline in Insect‐Pollinated Plants Across Danish Grasslands.” Biology Letters 17, no. 11: 20210493. 10.1098/rsbl.2021.0493. PubMed DOI PMC
Enyedi, Z. M. , Ruprecht E., and Deák M.. 2008. “Long‐Term Effects of the Abandonment of Grazing on Steppe‐Like Grasslands.” Applied Vegetation Science 11, no. 1: 55–62. 10.1111/j.1654-109X.2008.tb00204.x. DOI
E‐Vojtkó, A. , Balogh N., Deák B., et al. 2020. “Leaf Trait Records of Vascular Plant Species in the Pannonian Flora With Special Focus on Endemics and Rarities.” Folia Geobotanica 55, no. 2: 73–79. 10.1007/s12224-020-09363-7. DOI
Finderup Nielsen, T. , Sand‐Jensen K., and Bruun H. H.. 2021. “Drier, Darker and More Fertile: 140 Years of Plant Habitat Change Driven by Land‐Use Intensification.” Journal of Vegetation Science 32, no. 4: e13066. 10.1111/jvs.13066. DOI
Findurová, A. 2018. “Variabilita listových znaků SLA a LDMC vybraných druhů rostlin České republiky (Variability of Leaf Traits SLA and LDMC in Selected Species of the Czech Flora).” [MSc. Thesis, Masaryk University].
Fischer, F. M. , Chytrý K., Těšitel J., Danihelka J., and Chytrý M.. 2020. “Weather Fluctuations Drive Short‐Term Dynamics and Long‐Term Stability in Plant Communities: A 25‐Year Study in a Central European Dry Grassland.” Journal of Vegetation Science 31, no. 5: 711–721. 10.1111/jvs.12895. DOI
Giarrizzo, E. , Burrascano S., Chiti T., et al. 2017. “Re‐Visiting Historical Semi‐Natural Grasslands in the Apennines to Assess Patterns of Changes in Species Composition and Functional Traits.” Applied Vegetation Science 20, no. 2: 247–258. 10.1111/avsc.12288. DOI
Gigante, D. , Acosta A. T. R., Agrillo E., et al. 2018. “Habitat Conservation in Italy: The State of the Art in the Light of the First European Red List of Terrestrial and Freshwater Habitats.” Rendiconti Lincei. Scienze Fisiche e Naturali 29, no. 2: 251–265. 10.1007/s12210-018-0688-5. DOI
Grulich, V. 2017. “Červený seznam cévnatých rostlin ČR [The Red List of Vascular Plants of the Czech Republic].” Příroda 35: 75–132.
Guo, W.‐Y. , and Pierce S.. 2019. “Life Strategy.” [Dataset]. www.pladias.cz.
Hájek, M. , Dresler P., Hájková P., et al. 2017. “Long‐Lasting Imprint of Former Glassworks on Vegetation Pattern in an Extremely Species‐Rich Grassland: A Battle of Species Pools on Mesic Soils.” Ecosystems 20, no. 7: 1233–1249. 10.1007/s10021-017-0107-2. DOI
Hájek, M. , Horsáková V., Hájková P., et al. 2020. “Habitat Extremity and Conservation Management Stabilise Endangered Calcareous Fens in a Changing World.” Science of the Total Environment 719: 134693. 10.1016/j.scitotenv.2019.134693. PubMed DOI
Hájková, P. , Horsáková V., Peterka T., et al. 2022. “Conservation and Restoration of Central European Fens by Mowing: A Consensus From 20 Years of Experimental Work.” Science of the Total Environment 846: 157293. 10.1016/j.scitotenv.2022.157293. PubMed DOI
Harásek, M. , Klinkovská K., and Chytrý M.. 2023. “Vegetation Change in Acidic Dry Grasslands in Moravia (Czech Republic) Over Three Decades: Slow Decrease in Habitat Quality After Grazing Cessation.” Applied Vegetation Science 26, no. 2: e12726. 10.1111/avsc.12726. DOI
Hautier, Y. , Niklaus P. A., and Hector A.. 2009. “Competition for Light Causes Plant Biodiversity Loss After Eutrophication.” Science 324, no. 5927: 636–638. 10.1126/science.1169640. PubMed DOI
Herben, T. , Chytrý M., and Klimešová J.. 2016. “A Quest for Species‐Level Indicator Values for Disturbance.” Journal of Vegetation Science 27, no. 3: 628–636. 10.1111/jvs.12384. DOI
Hillebrand, H. , Blasius B., Borer E. T., et al. 2018. “Biodiversity Change Is Uncoupled From Species Richness Trends: Consequences for Conservation and Monitoring.” Journal of Applied Ecology 55, no. 1: 169–184. 10.1111/1365-2664.12959. DOI
Hillier, S. H. , Sutton F., and Grime J. P.. 1994. “A New Technique for the Experimental Manipulation of Temperature in Plant Communities.” Functional Ecology 8, no. 6: 755–762. 10.2307/2390235. DOI
Jacquemyn, H. , Brys R., and Hermy M.. 2003. “Short‐Term Effects of Different Management Regimes on the Response of Calcareous Grassland Vegetation to Increased Nitrogen.” Biological Conservation 111, no. 2: 137–147. 10.1016/S0006-3207(02)00256-2. DOI
Jandt, U. , Bruelheide H., Berg C., et al. 2022. “ReSurveyGermany: Vegetation‐Plot Time‐Series Over the Past Hundred Years in Germany.” Scientific Data 9, no. 1: 631. 10.1038/s41597-022-01688-6. PubMed DOI PMC
Jandt, U. , Bruelheide H., Jansen F., et al. 2022. “More Losses Than Gains During One Century of Plant Biodiversity Change in Germany.” Nature 611, no. 7936: 512–518. 10.1038/s41586-022-05320-w. PubMed DOI
Jandt, U. , von Wehrden H., and Bruelheide H.. 2011. “Exploring Large Vegetation Databases to Detect Temporal Trends in Species Occurrences: Exploring Large Vegetation Databases to Detect Temporal Trends in Species Occurrences.” Journal of Vegetation Science 22, no. 6: 957–972. 10.1111/j.1654-1103.2011.01318.x. DOI
Jansen, F. , Bonn A., Bowler D. E., Bruelheide H., and Eichenberg D.. 2020. “Moderately Common Plants Show Highest Relative Losses.” Conservation Letters 13, no. 1: e12674. 10.1111/conl.12674. DOI
Janssen, J. A. M. , Rodwell J. S., García Criado M., et al. 2016. European Red List of Habitats. Part 2, Terrestrial and Freshwater Habitats. Luxembourg: Publications Office of the European Union. https://data.europa.eu/doi/10.2779/091372. DOI
Jernej, I. , Bohner A., Walcher R., et al. 2019. “Impact of Land‐Use Change in Mountain Semi‐Dry Meadows on Plants, Litter Decomposition and Earthworms.” Web Ecology 19, no. 2: 53–63. 10.5194/we-19-53-2019. DOI
Kapfer, J. , Hédl R., Jurasinski G., Kopecký M., Schei F. H., and Grytnes J.. 2017. “Resurveying Historical Vegetation Data—Opportunities and Challenges.” Applied Vegetation Science 20, no. 2: 164–171. 10.1111/avsc.12269. PubMed DOI PMC
Kaplan, Z. , Danihelka J., Chrtek J. Jr., et al. 2019. Klíč ke květeně České republiky [Key to the flora of the Czech Republic], edited by Kaplan Z., Danihelka J., Chrtek J. Jr., Kirschner J., Kubát K., Štech M., and Štěpánek J., 2nd ed. Praha: Academia.
Kattge, J. , Bönisch G., Díaz S., et al. 2020. “TRY Plant Trait Database—Enhanced Coverage and Open Access.” Global Change Biology 26, no. 1: 119–188. 10.1111/gcb.14904. PubMed DOI
Kelemen, A. , Török P., Valkó O., et al. 2014. “Sustaining Recovered Grasslands Is Not Likely Without Proper Management: Vegetation Changes After Cessation of Mowing.” Biodiversity and Conservation 23, no. 3: 741–751. 10.1007/s10531-014-0631-8. DOI
Kirkham, F. W. , Mountford J. O., and Wilkins R. J.. 1996. “The Effects of Nitrogen, Potassium and Phosphorus Addition on the Vegetation of a Somerset Peat Moor Under Cutting Management.” Journal of Applied Ecology 33, no. 5: 1013–1029. 10.2307/2404682. DOI
Kirschbaum, M. U. F. , and McMillan A. M. S.. 2018. “Warming and Elevated CO2 Have Opposing Influences on Transpiration. Which Is More Important?” Current Forestry Reports 4, no. 2: 51–71. 10.1007/s40725-018-0073-8. DOI
Kleyer, M. , Bekker R. M., Knevel I. C., et al. 2008. “The LEDA Traitbase: A Database of Life‐History Traits of the Northwest European Flora.” Journal of Ecology 96, no. 6: 1266–1274. 10.1111/j.1365-2745.2008.01430.x. DOI
Klinkovská, K. , Glaser M., Danihelka J., et al. 2024. “Dynamics of the Czech Flora Over the Last 60 Years: Winners, Losers and Causes of Changes.” Biological Conservation 292: 110502. 10.1016/j.biocon.2024.110502. DOI
Klinkovská, K. , Kučerová A., Pustková Š., et al. 2023. “Subalpine Vegetation Changes in the Eastern Sudetes (1973–2021): Effects of Abandonment, Conservation Management and Avalanches.” Applied Vegetation Science 26, no. 1: e12711. 10.1111/avsc.12711. DOI
Klinkovská, K. , Sperandii M. G., Knollová I., et al. 2025. “Supplementary Data and Code From: Half a Century of Temperate Non‐Forest Vegetation Changes: No Net Loss in Species Richness, but Considerable Shifts in Taxonomic and Functional Composition.” [Dataset]. Zenodo. 10.5281/zenodo.14589270. PubMed DOI PMC
Klinkovská, K. , Sperandii M. G., Trávníček B., and Chytrý M.. 2024. “Significant Decline in Habitat Specialists in Semi‐Dry Grasslands Over Four Decades.” Biodiversity and Conservation 33, no. 1: 161–178. 10.1007/s10531-023-02740-6. DOI
Klotz, S. , and Kühn I.. 2002. “Blattmerkmale.” In BIOLFLOR: Eine Datenbank mit Biologisch‐Ökologischen Merkmalen zur Flora von Deutschland, edited by Klotz S., Kühn I., and Durka W., 119–126.
Klotz, S. , Kühn I., and Durka W.. 2002. BIOLFLOR: eine Datenbank mit biologisch‐ökologischen Merkmalen zur Flora von Deutschland. Bonn: Bundesamt für Naturschutz.
Knollová, I. , Chytrý M., Bruelheide H., et al. 2024. “ReSurveyEurope: A Database of Resurveyed Vegetation Plots in Europe.” Journal of Vegetation Science 35: e13235. 10.1111/jvs.13235. DOI
Koch, M. , and Jurasinski G.. 2015. “Four Decades of Vegetation Development in a Percolation Mire Complex Following Intensive Drainage and Abandonment.” Plant Ecology and Diversity 8, no. 1: 49–60. 10.1080/17550874.2013.862752. DOI
Kolari, T. H. M. , Korpelainen P., Kumpula T., and Tahvanainen T.. 2021. “Accelerated Vegetation Succession but no Hydrological Change in a Boreal Fen During 20 Years of Recent Climate Change.” Ecology and Evolution 11, no. 12: 7602–7621. 10.1002/ece3.7592. PubMed DOI PMC
Konečná, M. , Štech M., and Lepš J.. 2018. “Myrmecochory.” [Dataset]. www.pladias.cz.
Krahulec, F. , Skálová H., Herben T., Hadincová V., Wildová R., and Pecháčková S.. 2001. “Vegetation Changes Following Sheep Grazing in Abandoned Mountain Meadows.” Applied Vegetation Science 4, no. 1: 97–102. 10.1111/j.1654-109X.2001.tb00239.x. DOI
Kuczynski, L. , Ontiveros V. J., and Hillebrand H.. 2023. “Biodiversity Time Series Are Biased Towards Increasing Species Richness in Changing Environments.” Nature Ecology & Evolution 7, no. 7: 994–1001. 10.1038/s41559-023-02078-w. PubMed DOI PMC
Lavorel, S. , and Garnier E.. 2002. “Predicting Changes in Community Composition and Ecosystem Functioning From Plant Traits: Revisiting the Holy Grail.” Functional Ecology 16, no. 5: 545–556. 10.1046/j.1365-2435.2002.00664.x. DOI
Lenoir, J. , Gégout J., Marquet P. A., Ruffray P., and De Brisse H.. 2008. “A Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century.” Science 320, no. 5884: 1768–1771. 10.1126/science.1156831. PubMed DOI
Louault, F. , Pillar V. D., Aufrère J., Garnier E., and Soussana J.‐F.. 2005. “Plant Traits and Functional Types in Response to Reduced Disturbance in a Semi‐Natural Grassland.” Journal of Vegetation Science 16, no. 2: 151–160. 10.1111/j.1654-1103.2005.tb02350.x. DOI
Mälson, K. , Backéus I., and Rydin H.. 2008. “Long‐Term Effects of Drainage and Initial Effects of Hydrological Restoration on Rich Fen Vegetation.” Applied Vegetation Science 11, no. 1: 99–106. 10.3170/2007-7-18329. DOI
Navrátilová, J. , Navrátil J., and Hájek M.. 2022. “Medium‐Term Changes of Vegetation Composition on Fens of the Rural Landscape, Tested Using Fixed Permanent Plots.” Folia Geobotanica 57, no. 3: 151–166. 10.1007/s12224-022-09421-2. DOI
Oksanen, J. , Simpson G. L., Blanchet F. G., et al. 2022. “Vegan: Community Ecology Package (Version 2.6‐4).” [Computer Software]. https://cran.r‐project.org/web/packages/vegan/index.html.
Ortmann‐Ajkai, A. , Csicsek G., Hollós R., Magyaros V., Wágner L., and Lóczy D.. 2018. “Twenty‐Years' Changes of Wetland Vegetation: Effects of Floodplain‐Level Threats.” Wetlands 38, no. 3: 591–604. 10.1007/s13157-018-1002-0. DOI
Pakeman, R. J. , Hewison R. L., Riach D., et al. 2017. “Long‐Term Functional Structure and Functional Diversity Changes in Scottish Grasslands.” Agriculture, Ecosystems & Environment 247: 352–362. 10.1016/j.agee.2017.06.033. DOI
Pakeman, R. J. , Lepš J., Kleyer M., Lavorel S., Garnier E., and The VISTA Consortium . 2009. “Relative Climatic, Edaphic and Management Controls of Plant Functional Trait Signatures.” Journal of Vegetation Science 20, no. 1: 148–159. 10.1111/j.1654-1103.2009.05548.x. DOI
Pan, K. , Marshall L., de Snoo G. R., and Biesmeijer J. C.. 2024. “Dutch Landscapes Have Lost Insect‐Pollinated Plants Over the Past 87 Years.” Journal of Applied Ecology 61, no. 6: 1323–1333. 10.1111/1365-2664.14649. DOI
Pasquet, S. , Pellerin S., and Poulin M.. 2015. “Three Decades of Vegetation Changes in Peatlands Isolated in an Agricultural Landscape.” Applied Vegetation Science 18, no. 2: 220–229. 10.1111/avsc.12142. DOI
Pauli, H. , Gottfried M., Dullinger S., et al. 2012. “Recent Plant Diversity Changes on Europe's Mountain Summits.” Science 336, no. 6079: 353–355. 10.1126/science.1219033. PubMed DOI
Pauli, H. , Gottfried M., Lamprecht A., et al. 2015. The GLORIA Field Manual—Standard Multi‐Summit Approach, Supplementary Methods and Extra Approaches. 5th ed. Vienna :GLORIA‐Coordination, Austrian Academy of Sciences & University of Natural Resources and Life Sciences.
Pedersen, T. L. 2024. “Patchwork: The Composer of Plots (Version 1.2.0).” [Computer Software]. https://cran.r‐project.org/web/packages/patchwork/index.html.
Peppler‐Lisbach, C. , Stanik N., Könitz N., and Rosenthal G.. 2020. “Long‐Term Vegetation Changes in Nardus Grasslands Indicate Eutrophication, Recovery From Acidification, and Management Change as the Main Drivers.” Applied Vegetation Science 23, no. 4: 508–521. 10.1111/avsc.12513. DOI
Pereira, H. M. , Ferrier S., Walters M., et al. 2013. “Essential Biodiversity Variables.” Science 339, no. 6117: 277–278. 10.1126/science.1229931. PubMed DOI
Peringer, A. , Siehoff S., Chételat J., Spiegelberger T., Buttler A., and Gillet F.. 2013. “Past and Future Landscape Dynamics in Pasture‐Woodlands of the Swiss Jura Mountains Under Climate Change.” Ecology and Society 18, no. 3: 11. 10.5751/ES-05600-180311. DOI
Perzanowska, J. , and Korzeniak J.. 2020. “Red List of Natura 2000 Habitat Types of Poland.” Journal for Nature Conservation 56: 125834. 10.1016/j.jnc.2020.125834. DOI
Pierce, S. , Negreiros D., Cerabolini B. E. L., et al. 2017. “A Global Method for Calculating Plant CSR Ecological Strategies Applied Across Biomes World‐Wide.” Functional Ecology 31, no. 2: 444–457. 10.1111/1365-2435.12722. DOI
Pimm, S. L. , Jenkins C. N., Abell R., et al. 2014. “The Biodiversity of Species and Their Rates of Extinction, Distribution, and Protection.” Science 344, no. 6187: 1246752. 10.1126/science.1246752. PubMed DOI
Poniatowski, D. , Hertenstein F., Raude N., Gottbehüt K., Nickel H., and Fartmann T.. 2018. “The Invasion of Bromus Erectus Alters Species Diversity of Vascular Plants and Leafhoppers in Calcareous Grasslands.” Insect Conservation and Diversity 11, no. 6: 578–586. 10.1111/icad.12302. DOI
Prach, K. , Řehounková K., Lencová K., et al. 2014. “Vegetation Succession in Restoration of Disturbed Sites in Central Europe: The Direction of Succession and Species Richness Across 19 Seres.” Applied Vegetation Science 17, no. 2: 193–200. 10.1111/avsc.12064. DOI
Prach, K. , Tichý L., Vítovcová K., and Řehounková K.. 2017. “Participation of the Czech Flora in Succession at Disturbed Sites: Quantifying Species' Colonization Ability.” Preslia 89, no. 2: 87–100. 10.23855/preslia.2017.087. DOI
Pyšek, P. , Sádlo J., J. Chrtek Jr., et al. 2022. “Catalogue of Alien Plants of The Czech Republic (3rd Edition): Species Richness, Status, Distributions, Habitats, Regional Invasion Levels, Introduction Pathways and Impacts.” Preslia 94, no. 4: 447–577. 10.23855/preslia.2022.447. DOI
R Core Team . 2023. “R: A Language and Environment for Statistical Computing.” R Foundation for Statistical Computing [Computer software]. https://www.R‐project.org/.
Ridding, L. E. , Bullock J. M., Pescott O. L., et al. 2020. “Long‐Term Change in Calcareous Grassland Vegetation and Drivers Over Three Time Periods Between 1970 and 2016.” Plant Ecology 221, no. 5: 377–394. 10.1007/s11258-020-01016-1. DOI
Robinson, D. , Hayes A., Couch S., et al. 2023. Broom: Convert Statistical Objects into Tidy Tibbles (Version 1.0.5) [Computer software]. https://cran.r‐project.org/web/packages/broom/index.html.
Ruprecht, E. , Enyedi M. Z., Eckstein R. L., and Donath T. W.. 2010. “Restorative Removal of Plant Litter and Vegetation 40 Years After Abandonment Enhances Re‐Emergence of Steppe Grassland Vegetation.” Biological Conservation 143, no. 2: 449–456. 10.1016/j.biocon.2009.11.012. DOI
Sádlo, J. , Chytrý M., Pergl J., and Pyšek P.. 2018. “Plant Dispersal Strategies: A New Classification Based on the Multiple Dispersal Modes of Individual Species.” Preslia 90, no. 1: 1–22. 10.23855/preslia.2018.001. DOI
Smart, S. M. , Bunce R. G. H., Marrs R., et al. 2005. “Large‐Scale Changes in the Abundance of Common Higher Plant Species Across Britain Between 1978, 1990 and 1998 as a Consequence of Human Activity: Tests of Hypothesised Changes in Trait Representation.” Biological Conservation 124, no. 3: 355–371. 10.1016/j.biocon.2004.12.013. DOI
Smith, M. D. , Knapp A. K., and Collins S. L.. 2009. “A Framework for Assessing Ecosystem Dynamics in Response to Chronic Resource Alterations Induced by Global Change.” Ecology 90, no. 12: 3279–3289. 10.1890/08-1815.1. PubMed DOI
Sperandii, M. G. , Barták V., Carboni M., and Acosta A. T. R.. 2021. “Getting the Measure of the Biodiversity Crisis in Mediterranean Coastal Habitats.” Journal of Ecology 109, no. 3: 1224–1235. 10.1111/1365-2745.13547. DOI
Sperandii, M. G. , de Bello F., Valencia E., et al. 2022. “LOTVS: A Global Collection of Permanent Vegetation Plots.” Journal of Vegetation Science 33, no. 2: e13115. 10.1111/jvs.13115. DOI
Steinbauer, M. J. , Grytnes J.‐A., Jurasinski G., et al. 2018. “Accelerated Increase in Plant Species Richness on Mountain Summits Is Linked to Warming.” Nature 556, no. 7700: 231–234. 10.1038/s41586-018-0005-6. PubMed DOI
Sternberg, M. , Brown V. K., Masters G. J., and Clarke I. P.. 1999. “Plant Community Dynamics in a Calcareous Grassland Under Climate Change Manipulations.” Plant Ecology 143, no. 1: 29–37. 10.1023/A:1009812024996. DOI
Swann, A. L. S. , Hoffman F. M., Koven C. D., and Randerson J. T.. 2016. “Plant Responses to Increasing CO2 Reduce Estimates of Climate Impacts on Drought Severity.” Proceedings of the National Academy of Sciences 113, no. 36: 10019–10024. 10.1073/pnas.1604581113. PubMed DOI PMC
Těšitel, J. , Těšitelová T., Blažek P., and Lepš J.. 2016. “Parasitism and Mycoheterotrophy.” [Dataset]. www.pladias.cz.
Tichý, L. 2002. “JUICE, Software for Vegetation Classification.” Journal of Vegetation Science 13, no. 3: 451–453. 10.1111/j.1654-1103.2002.tb02069.x. DOI
Vellend, M. , Baeten L., Myers‐Smith I. H., et al. 2013. “Global Meta‐Analysis Reveals no Net Change in Local‐Scale Plant Biodiversity Over Time.” Proceedings of the National Academy of Sciences 110, no. 48: 19456–19459. 10.1073/pnas.1312779110. PubMed DOI PMC
Verheyen, K. , Bažány M., Chećko E., et al. 2018. “Observer and Relocation Errors Matter in Resurveys of Historical Vegetation Plots.” Journal of Vegetation Science 29, no. 5: 812–823. 10.1111/jvs.12673. DOI
Verheyen, K. , De Frenne P., Baeten L., et al. 2017. “Combining Biodiversity Resurveys Across Regions to Advance Global Change Research.” Bioscience 67, no. 1: 73–83. 10.1093/biosci/biw150. PubMed DOI PMC
Walther, G.‐R. , Beißner S., and Burga C. A.. 2005. “Trends in the Upward Shift of Alpine Plants.” Journal of Vegetation Science 16, no. 5: 541–548. 10.1111/j.1654-1103.2005.tb02394.x. DOI
Walther, H. 1960. Grundlagen der Pflanzenverbreitung. I. Standortslehre (Analytisch‐ökologische Geobotanik). Stuttgart: Ulmer.
Wassen, M. J. , and Olde Venterink H.. 2006. “Comparison of Nitrogen and Phosphorus Fluxes in Some European Fens and Floodplains.” Applied Vegetation Science 9, no. 2: 213–222. 10.1111/j.1654-109X.2006.tb00670.x. DOI
Weigelt, P. , König C., and Kreft H.. 2020. “GIFT—A Global Inventory of Floras and Traits for Macroecology and Biogeography.” Journal of Biogeography 47, no. 1: 16–43. 10.1111/jbi.13623. DOI
Wesche, K. , Krause B., Culmsee H., and Leuschner C.. 2012. “Fifty Years of Change in Central European Grassland Vegetation: Large Losses in Species Richness and Animal‐Pollinated Plants.” Biological Conservation 150, no. 1: 76–85. 10.1016/j.biocon.2012.02.015. DOI
Westhoff, V. , and van der Maarel E.. 1978. “The Braun‐Blanquet Approach.” In Classification of Plant Communities, edited by Whittaker R. H., 287–399. Dordrecht: Springer. 10.1007/978-94-009-9183-5_9. DOI
Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis. New York: Springer. 10.1007/978-0-387-98141-3. DOI
Wickham, H. , Averick M., Bryan J., et al. 2019. “Welcome to the Tidyverse.” Journal of Open Source Software 4, no. 43: 1686. 10.21105/joss.01686. DOI
Wickham, H. , Bryan J., Posit, PBC , et al. 2023. “Readxl: Read Excel Files (Version 1.4.3).” [Computer Software]. https://cran.r‐project.org/web/packages/readxl/index.html.
Wickham, H. , Pedersen T. L., Seidel D., and Posit, & PBC . 2023. “Scales: Scale Functions for Visualization (Version 1.3.0).” [Computer software]. https://cran.r‐project.org/web/packages/scales/index.html.
Wood, S. N. 2011. “Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models.” Journal of the Royal Statistical Society, Series B: Statistical Methodology 73, no. 1: 3–36. 10.1111/j.1467-9868.2010.00749.x. DOI
Wu, Z. , Dijkstra P., Koch G. W., Peñuelas J., and Hungate B. A.. 2011. “Responses of Terrestrial Ecosystems to Temperature and Precipitation Change: A Meta‐Analysis of Experimental Manipulation.” Global Change Biology 17, no. 2: 927–942. 10.1111/j.1365-2486.2010.02302.x. DOI
Zelený, D. , and Chytrý M.. 2019. “Ecological Specialization Indices for Species of the Czech Flora.” Preslia 91, no. 2: 93–116. 10.23855/preslia.2019.093. DOI
Adámek, M. 2007. “Změny vegetace luk povodí Žebrákovského potoka po 30 letech.” [MSc. Thesis, Charles University, Prague]. http://hdl.handle.net/20.500.11956/87753.
Blažková, D. 2010. “Společenstva s ostřicí třeslicovitou (Carex brizoides) a jejich sukcese.” Silva Gabreta 16, no. 1: 13–25.
Blažková, D. , and Hruška J.. 1999. “Vegetace lad s ostřicí třeslicovitou (Carex brizoides) v souvislosti s obnovením ekosystémů oligotrofních povodí s perlorodkou říční (Margaritifera margaritifera).” Příroda 15: 17–24.
Chytrý, M. 2022. “Dry Grasslands of the Podyjí/Thayatal National Park.” http://euroveg.org/resurvey_metadata/CZ_0023.pdf.
Danihelka, J. 2019. “Permanent Plots in Dry Grasslands on Děvín Hill, Southern Moravia, Czech Republic.” [Dataset]. Figshare. 10.6084/m9.figshare.9971039.v1. DOI
Dršková, M. 2017. “Vegetace mokřadních a rašelinných luk Rožnovské Bečvy a její změny vlivem různého managementu.” [MSc. Thesis, Masaryk University, Brno]. https://is.muni.cz/th/q5j3l/.
Dvorský, M. , Mudrák O., Doležal J., and Jirků M.. 2022. “Reintroduction of Large Herbivores Restored Plant Species Richness in Abandoned Dry Temperate Grassland.” Plant Ecology 223, no. 5: 525–535. 10.1007/s11258-022-01225-w. DOI
Filipová, M. 2004. Změny vegetace xerotermních trávníků v NPR Vyšenské kopce a v okolí vlivem kosení, pastvy a odlesnění. České Budějovice: [MSc. Thesis, University of South Bohemia in České Budějovice]. https://botanika.prf.jcu.cz/thesis/pdf/FilipovaM_Mgr04.pdf.
Hájková, P. , Hájek M., Rybníček K., et al. 2011. “Long‐Term Vegetation Changes in Bogs Exposed to High Atmospheric Deposition, Aerial Liming and Climate Fluctuation: Atmospheric Deposition and Vegetation Change in Bogs.” Journal of Vegetation Science 22, no. 5: 891–904. 10.1111/j.1654-1103.2011.01297.x. DOI
Hájková, P. , Horsáková V., Peterka T., et al. 2022. “Conservation and Restoration of Central European Fens by Mowing: A Consensus From 20 Years of Experimental Work.” Science of the Total Environment 846: 157293. 10.1016/j.scitotenv.2022.157293. PubMed DOI
Harásek, M. , Klinkovská K., and Chytrý M.. 2023. “Vegetation Change in Acidic Dry Grasslands in Moravia (Czech Republic) Over Three Decades: Slow Decrease in Habitat Quality After Grazing Cessation.” Applied Vegetation Science 26, no. 2: e12726. 10.1111/avsc.12726. DOI
Horká, E. 2022. Flóra a vegetace nivy Jedlového potoka (NP Šumava). České Budějovice: [BSc. Thesis, University of South Bohemia in České Budějovice]. https://theses.cz/id/28662b/BP_ELISKA_HORKA.pdf.
Hroudová, Z. , and Zákravský P.. 2000. “Vegetation Changes in the Steppe Community of Bohemian Karst Within Period 1965–1998.” Příroda 17: 25–38.
Husek, V. 2020. “Dlouhodobé změny subalpínské vegetace Králického Sněžníku.” [MSc. Thesis, Palacký University, Olomouc]. https://library.upol.cz/arl‐upol/cs/detail‐upol_us_cat‐0327609‐Dlouhodobe‐zmeny‐subalpinske‐vegetace‐Kralickeho‐Snezniku/.
Jandová, L. 2007. “Změny travinných ekosystémů v prostoru železniční stavby. Krajinně‐ekologická případová studie: Estakáda u Dlouhé Třebové.” [MSc. Thesis, Charles University, Prague]. http://hdl.handle.net/20.500.11956/93550.
Karešová, P. , Rydlo J., and Rydlo J.. 2016. “Změny ve vegetaci makrofyt v rybníce Horní Kracle." Práce muzea v Kolíně, Ser . Nat. 12: 53–58.
Klaudisová, A. 1996. “Ekobiologická studie sinokvětu chrpovitého (Jurinea cyanoides (L.) Reichenb.).” Příroda 6: 69–93.
Klinkovská, K. , Kučerová A., Pustková Š., et al. 2023. “Subalpine Vegetation Changes in the Eastern Sudetes (1973–2021): Effects of Abandonment, Conservation Management and Avalanches.” Applied Vegetation Science 26, no. 1: e12711. 10.1111/avsc.12711. DOI
Klinkovská, K. , Sperandii M. G., Trávníček B., and Chytrý M.. 2024. “Significant Decline in Habitat Specialists in Semi‐Dry Grasslands Over Four Decades.” Biodiversity and Conservation 33, no. 1: 161–178. 10.1007/s10531-023-02740-6. DOI
Kopecký, K. 1986. “Ústup společenstva Malvetum neglectae a sukcese na jeho stanovištích.” Preslia 58: 63–74.
Koubková, T. 2007. “Nelesní vegetace písků na Hodonínsku a její změny po třech desetiletích.” [MSc. Thesis, Masaryk University, Brno]. https://is.muni.cz/th/szeje/?id=61740.
Kovář, P. 1997. “Změny vegetace na lokalitě Albrechtův vrch (Stodůlky—Butovice) v přírodní rezervaci Prokopské údolí za období 1986–1996.” Příroda 11: 143–154.
Krahulec, F. , Blažková D., Balátová‐Tuláčková E., Štursa J., Pecháčková S., and Fabšičová M.. 1997. “Louky Krkonoš: Rostlinná společenstva a jejich dynamika.” Opera Corcontica 33: 1–252.
Kubíková, J. 2010. “Dynamika xerofilních trávníků na vápencích Radotínského údolí v Praze: Vliv zaprášení emisemi cementárny v Lochkově.” Bohemia Centralis 30: 161–174.
Kubíková, J. , Hadinec J., Osbornová J., and Rektoris L.. 1994. “Zhodnocení opakovaného sledování květeny a vegetace přírodní rezervace Divoká Šárka v Praze.” Příroda 1: 31–62.
Kubíková, J. , Hadinec J., and Špyňar P.. 1996. “Opakované sledování květeny a vegetace v přírodní rezervaci Prokopské údolí v Praze.” Příroda 5: 33–58.
Lepš, J. 2014. “Scale‐ and Time‐Dependent Effects of Fertilization, Mowing and Dominant Removal on a Grassland Community During a 15‐Year Experiment.” Journal of Applied Ecology 51, no. 4: 978–987. 10.1111/1365-2664.12255. DOI
Macková, P. 2021. “Současný vývoj vegetace na rašelinných loukách v PR Chvojnov.” [BSc. Thesis, Masaryk University, Brno]. https://is.muni.cz/th/bdu3a/.
Matějková, I. 2015. “Floristické a vegetační poměry přírodní památky Dolejší dráhy u Nehovidi v průběhu dvou desetiletí.” Erica 22: 3–60.
Navrátilová, J. , Navrátil J., and Hájek M.. 2022. “Medium‐Term Changes of Vegetation Composition on Fens of the Rural Landscape, Tested Using Fixed Permanent Plots.” Folia Geobotanica 57, no. 3: 151–166. 10.1007/s12224-022-09421-2. DOI
Pašťalková, H. , Vacek S., Matějka K., and Málková J.. 2001. “Vegetation Dynamics in Dwarf Pine Ecosystems in the Western Giant Mts.” Opera Corcontica 38: 89–121.
Prach, K. 1993. “Vegetational Changes in a Wet Meadow Complex, South Bohemia, Czech Republic.” Folia Geobotanica et Phytotaxonomica 28: 1–13. 10.1007/BF02853197. DOI
Prach, K. 2008. “Vegetation Changes in a Wet Meadow Complex During the Past Half Century.” Folia Geobotanica 43: 119–130. 10.1007/s12224-008-9011-z. DOI
Prach, K. , Vítovcová K., Řehounková K., and Královec J.. 2021. “Three Decades of Vegetation Changes in a Submontane Grassland After the Cessation of Intensive Fertilization.” Preslia 93: 169–179. 10.23855/preslia.2021.169. DOI
Řehounková, K. “Chomoutov Wetland.” http://euroveg.org/resurvey_metadata/CZ_0010.pdf.
Rohel, J. 2023. “Vegetace údolí Křtinského potoka a její dynamika.” [BSc. Thesis, Masaryk University, Brno]. https://is.muni.cz/auth/th/ors8k/.
Rydlo, J. 2011. “Regenerace stepní vegetace na Oblíku po geobotanickém výzkumu." Muzeum a současnost, Ser . Nat. 26: 113–120.
Rydlo, J. 2016a. “Změny pokryvnosti jednotlivých druhů na Vokálově louce v Osečku v letech 1997‐2016." Práce muzea v Kolíně, Ser . Nat. 12: 3–6.
Rydlo, J. 2016b. “Změny vodních makrofyt v rybníčku v Boru u Sokolče." Práce muzea v Kolíně, Ser . Nat. 12: 7–10.
Šimák, M. 2018. “Změna vegetace vlhkých luk ve Slavkovském lese.” [MSc. Thesis, Charles University, Prague]. http://hdl.handle.net/20.500.11956/100981.
Sobotka, V. 2024. “Sukcese stepní vegetace na opuštěných polích jižní Moravy.” [MSc. Thesis, Masaryk University, Brno]. https://is.muni.cz/auth/th/azlun/.
Tájek, P. , Janovský Z., and Lampei Bucharová A.. 2015. “Flóra a vegetace národní přírodní památky Křížky a vývoj vegetace během uplynulého desetiletí.” Sborník muzea Karlovarského kraje 23: 229–268.
Tichý, L. 1998. “Teplotní poměry a vegetace na lokalitě Sloní hřbet v Národním parku Podyjí.” Preslia 70: 349–363.
Tichý, L. 2022. “PP Kozének—Permanent Plots.” http://euroveg.org/resurvey_metadata/CZ_0005.pdf.
Tichý, L. 2022. “Rocky Outcrops at the Dyje River Valley.” https://euroveg.org/resurvey_metadata/CZ_0004.pdf.
Tichý, L. 2022. “Steppic Grassland of the Nature Monument Obřanská stráň.” http://euroveg.org/resurvey_metadata/CZ_0016.pdf.
Vacek, M. 2023. Zhodnocení dlouhodobého vlivu managementu v NPR Vyšenské kopce. České Budějovice: [MSc. Thesis, University of South Bohemia in České Budějovice]. https://theses.cz/id/t91aqz/Vacek_Michal_2023_DP.pdf.
Vašíčková, J. 2007. “Časoprostorová dynamika luční vegetace na příkladu přírodní památky Hrnčířské louky.” [MSc. Thesis, Charles University, Prague]. http://hdl.handle.net/20.500.11956/99571.
Veleba, A. 2010. “Vliv kosení na druhové složení rašelinných luk ve Žďárských vrších.” [MSc. Thesis, Masaryk University, Brno]. https://is.muni.cz/auth/th/uqkjf/.
Vydrová, A. 2022. “Long‐Term Monitoring in EVL Boletice.” http://euroveg.org/resurvey_metadata/CZ_0018.pdf.
Vydrová, A. 2022. “Long‐Term Monitoring in EVL Šumava.” http://euroveg.org/resurvey_metadata/CZ_0021.pdf.
Zmeškalová, J. 2011. “Změny stepní vegetace v modelovém území NPR Oblík." Muzeum a současnost, Ser . Nat. 26: 71–112.