Modulation of Living Cell Behavior with Ultra-Low Fouling Polymer Brush Interfaces
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32045093
DOI
10.1002/mabi.201900351
Knihovny.cz E-zdroje
- Klíčová slova
- antifouling, cell-surface interactions, living cells, surface modification, zwitterionic polymer,
- MeSH
- biokompatibilní potahované materiály * chemie farmakologie MeSH
- cytoskelet metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- polymery * chemie farmakologie MeSH
- smáčivost MeSH
- testování materiálů * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biokompatibilní potahované materiály * MeSH
- polymery * MeSH
Ultra-low fouling and functionalizable coatings represent emerging surface platforms for various analytical and biomedical applications such as those involving examination of cellular interactions in their native environments. Ultra-low fouling surface platforms as advanced interfaces enabling modulation of behavior of living cells via tuning surface physicochemical properties are presented and studied. The state-of-art ultra-low fouling surface-grafted polymer brushes of zwitterionic poly(carboxybetaine acrylamide), nonionic poly(N-(2-hydroxypropyl)methacrylamide), and random copolymers of carboxybetaine methacrylamide (CBMAA) and HPMAA [p(CBMAA-co-HPMAA)] with tunable molar contents of CBMAA and HPMAA are employed. Using a model Huh7 cell line, a systematic study of surface wettability, swelling, and charge effects on the cell growth, shape, and cytoskeleton distribution is performed. This study reveals that ultra-low fouling interfaces with a high content of zwitterionic moieties (>65 mol%) modulate cell behavior in a distinctly different way compared to coatings with a high content of nonionic HPMAA. These differences are attributed mostly to the surface hydration capabilities. The results demonstrate a high potential of carboxybetaine-rich ultra-low fouling surfaces with high hydration capabilities and minimum background signal interferences to create next-generation bioresponsive interfaces for advanced studies of living objects.
Zobrazit více v PubMed
I. Banerjee, R. C. Pangule, R. S. Kane, Adv. Mater. 2011, 23, 690.
H. Vaisocherova, E. Brynda, J. Homola, Anal. Bioanal. Chem. 2015, 407, 3927.
S. Y. Jiang, K. Ishihara, Y. Iwasaki, J. Vancso, Langmuir 2019, 35, 1055.
X. Lin, P. Jain, K. Wu, D. Hong, H.-C. Hung, M. B. O'Kelly, B. Li, P. Zhang, Z. Yuan, S. Jiang, Langmuir 2019, 35, 1544.
C. Blaszykowski, S. Sheikh, M. Thompson, Biomater. Sci. 2015, 3, 1335.
F. Sun, H. C. Hung, A. Sinclair, P. Zhang, T. Bai, D. D. Galvan, P. Jain, B. Li, S. Jiang, Q. Yu, Nat. Commun. 2016, 7, 13437.
B. S. Liu, X. Liu, S. Shi, R. L. Huang, R. X. Su, W. Qi, Z. M. He, Acta Biomater. 2016, 40, 100.
R. G. LeBaron, K. A. Athanasiou, Tissue Eng. 2000, 6, 85.
J. S. Hayes, E. M. Czekanska, R. G. Richards, Advances in Biochemical Engineering Biotechnology, Vol. 126 (Eds: C. Kasper, F. Witte, R. Pörtner), Springer, Berlin, Heidelberg 2011.
M. P. Lutolf, P. M. Gilbert, H. M. Blau, Nature 2009, 462, 433.
S. M. Oliveira, N. M. Alves, J. F. Mano, J. Adhes. Sci. Technol. 2014, 28, 843.
L. C. Xu, C. A. Siedlecki, Biomaterials 2007, 28, 3273.
Y. Arima, H. Iwata, Biomaterials 2007, 28, 3074.
A. Ranella, M. Barberoglou, S. Bakogianni, C. Fotakis, E. Stratakis, Acta Biomater. 2010, 6, 2711.
J. Ishikawa, H. Tsuji, H. Sato, Y. Gotoh, Surf. Coat. Technol. 2007, 201, 8083.
M. R. Bet, G. Goissis, S. Vargas, H. S. Selistre-de-Araujo, Biomaterials 2003, 24, 131.
H. Y. Chang, C. C. Huang, K. Y. Lin, W. L. Kao, H. Y. Liao, Y. W. You, J. H. Lin, Y. T. Kuo, D. Y. Kuo, J. J. Shyue, J. Phys. Chem. C 2014, 118, 14464.
X. Sun, H. Wang, Y. Wang, T. Gui, K. Wang, C. Gao, Biosens. Bioelectron. 2018, 102, 63.
B. L. Leigh, E. Cheng, L. Xu, C. Andresen, M. R. Hansen, C. A. Guymon, Biomacromolecules 2017, 18, 2389.
A. E. Rodda, F. Ercole, V. Glattauer, J. Gardiner, D. R. Nisbet, K. E. Healy, J. S. Forsythe, L. Meagher, Biomacromolecules 2015, 16, 2109.
B.-Y. Yu, J. Zheng, Y. Chang, M.-C. Sin, C.-H. Chang, A. Higuchi, Y.-M. Sun, Langmuir 2014, 30, 7502.
A. C. H. Pape, B. D. Ippel, P. Y. W. Dankers, Langmuir 2017, 33, 4076.
O. J. G. M. Goor, J. E. P. Brouns, P. Y. W. Dankers, Polym. Chem. 2017, 8, 5228.
H. Chen, M. Zhang, J. Yang, C. Zhao, R. Hu, Q. Chen, Y. Chang, J. Zheng, Langmuir 2014, 30, 10398.
F. Yang, Y. Liu, Y. Zhang, B. Ren, J. Xu, J. Zheng, Langmuir 2017, 33, 13964.
L. Ye, Y. Zhang, Q. Wang, X. Zhou, B. Yang, F. Ji, D. Dong, L. Gao, Y. Cui, F. Yao, ACS Appl. Mater. Interfaces 2016, 8, 15710.
Y.-N. Chou, T.-C. Wen, Y. Chang, Acta Biomater. 2016, 40, 78.
W. Li, Q. Liu, L. Liu, J. Biomater. Sci., Polym. Ed. 2014, 25, 1730.
T. Bai, F. Sun, L. Zhang, A. Sinclair, S. Liu, J. R. Ella-Menye, Y. Zheng, S. Jiang, Angew. Chem., Int. Ed. 2014, 53, 12729.
H. Vaisocherova-Lisalova, F. Surman, I. Visova, M. Vala, T. Springer, M. L. Ermini, H. Sipova, P. Sedivak, M. Houska, T. Riedel, O. Pop-Georgievski, E. Brynda, J. Homola, Anal. Chem. 2016, 88, 10533.
B. Smolkova, M. Lunova, A. Lynnyk, M. Uzhytchak, O. Churpita, M. Jirsa, S. Kubinova, O. Lunov, A. Dejneka, Cell. Physiol. Biochem. 2019, 52, 119.
H. Lisalova, E. Brynda, M. Houska, I. Visova, K. Mrkvova, X. C. Song, E. Gedeonova, F. Surman, T. Riedel, O. Pop-Georgievski, J. Homola, Anal. Chem. 2017, 89, 3524.
D. Kotlarek, M. Vorobii, W. Ogieglo, W. Knoll, C. Rodriguez-Emmenegger, J. Dostalek, ACS Sens. 2019, 4, 2109.
T. Ederth, P. Claesson, B. Liedberg, Langmuir 1998, 14, 4782.
J. Israelachvili, R. Pashley, Nature 1982, 300, 341.
J. Homola, Chem. Rev. 2008, 108, 462.
S. March, V. Ramanan, K. Trehan, S. Ng, A. Galstian, N. Gural, M. A. Scull, A. Shlomai, M. M. Mota, H. E. Fleming, S. R. Khetani, C. M. Rice, S. N. Bhatia, Nat. Protoc. 2015, 10, 2027.
M. Jelinek, T. Kocourek, K. Jurek, M. Jelinek, B. Smolkova, M. Uzhytchak, O. Lunov, Nanomaterials 2019, 9, 451.
A. Hucknall, S. Rangarajan, A. Chilkoti, Adv. Mater. 2009, 21, 2441.
R. H. Harrison, J. A. Steele, R. Chapman, A. J. Gormley, L. W. Chow, M. M. Mahat, L. Podhorska, R. G. Palgrave, D. J. Payne, S. P. Hettiaratchy, I. E. Dunlop, M. M. Stevens, Adv. Funct. Mater. 2015, 25, 5748.
D. Chen, M. Wu, B. Li, K. Ren, Z. Cheng, J. Ji, Y. Li, J. Sun, Adv. Mater. 2015, 27, 5882.
E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber, G. M. Whitesides, Langmuir 2001, 17, 6336.
B. D. Fairbanks, H. Thissen, G. Maurdev, P. Pasic, J. F. White, L. Meagher, Biomacromolecules 2014, 15, 3259.
W. Huang, B. Anvari, J. H. Torres, R. G. LeBaron, K. A. Athanasiou, J. Orthop. Res. 2003, 21, 88.
S. Hong, E. Ergezen, R. Lec, K. A. Barbee, Biomaterials 2006, 27, 5813.
T. Ishizaki, N. Saito, O. Takai, Langmuir 2010, 26, 8147.
A. I. Neto, C. A. Custodio, W. L. Song, J. F. Mano, Soft Matter 2011, 7, 4147.
S. Zurcher, D. Wackerlin, Y. Bethuel, B. Malisova, M. Textor, S. Tosatti, K. Gademann, J. Am. Chem. Soc. 2006, 128, 1064.
M. Lunova, V. Zablotskii, N. M. Dempsey, T. Devillers, M. Jirsa, E. Sykova, S. Kubinova, O. Lunov, A. Dejneka, Integr. Biol. 2016, 8, 1099.
A. Lynnyk, M. Lunova, M. Jirsa, D. Egorova, A. Kulikov, S. Kubinova, O. Lunov, A. Dejneka, Biomed. Opt. Express 2018, 9, 1283.
N. G. Papadopoulos, G. V. Z. Dedoussis, G. Spanakos, A. D. Gritzapis, C. N. Baxevanis, M. Papamichail, J. Immunol. Methods 1994, 177, 101.