High- and low-affinity sites for sodium in δ-OR-Gi1α (Cys (351)-Ile (351)) fusion protein stably expressed in HEK293 cells; functional significance and correlation with biophysical state of plasma membrane
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
- MeSH
- buněčná membrána metabolismus MeSH
- guanosin 5'-O-(3-thiotrifosfát) metabolismus MeSH
- HEK293 buňky MeSH
- leucin-2-alanin-enkefalin metabolismus MeSH
- lidé MeSH
- lipidové dvojvrstvy metabolismus MeSH
- lithium farmakologie MeSH
- proteiny vázající GTP - alfa-podjednotky Gi-Go metabolismus MeSH
- receptory opiátové delta metabolismus MeSH
- rekombinantní proteiny metabolismus MeSH
- sodík metabolismus MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- guanosin 5'-O-(3-thiotrifosfát) MeSH
- leucin-2-alanin-enkefalin MeSH
- lipidové dvojvrstvy MeSH
- lithium MeSH
- proteiny vázající GTP - alfa-podjednotky Gi-Go MeSH
- receptory opiátové delta MeSH
- rekombinantní proteiny MeSH
- sodík MeSH
The effect of sodium, potassium, and lithium on δ-opioid receptor ligand binding parameters and coupling with the cognate G proteins was compared in model HEK293 cell line stably expressing PTX-insensitive δ-OR-Gi1α (Cys(351)-Ile(351)) fusion protein. Agonist [(3)H]DADLE binding was decreased in the order Na(+) ≫ Li(+) > K(+) > (+)NMDG. When plotted as a function of increasing NaCl concentrations, the binding was best-fitted with a two-phase exponential decay considering two Na(+)-responsive sites (r (2) = 0.99). High-affinity Na(+)-sites were characterized by Kd = 7.9 mM and represented 25 % of the basal level determined in the absence of ions. The remaining 75 % represented the low-affinity sites (Kd = 463 mM). Inhibition of [(3)H]DADLE binding by lithium, potassium, and (+)-NMDG proceeded in low-affinity manner only. Surprisingly, the affinity/potency of DADLE-stimulated [(35)S]GTPγS binding was increased in a reverse order: Na(+) < K(+) < Li(+). This result was demonstrated in PTX-treated as well as PTX-untreated cells. Therefore, it is not restricted to Gi1α(Cys(351)-Ile(351)) within the δ-OR-Gi1α fusion protein, but is also valid for stimulation of endogenous G proteins of Gi/Go family in HEK293 cells. Biophysical studies of interaction of ions with polar head-group region of lipids using Laurdan generalized polarization indicated the low-affinity type of interaction only proceeding in the order: Cs(+) < K(+) < Na(+) < Li(+). The results are discussed in terms of interaction of Na(+), K(+) and Li(+) with the high- and low-affinity sites located in water-accessible part of δ-OR binding pocket. We also consider the role of negatively charged Cl(-), Br(-), and I(-) counter anions in inhibition of both [(3)H]DADLE and [(35)S]GTPγS binding.
Zobrazit více v PubMed
Mol Pharmacol. 1997 Jul;52(1):105-13 PubMed
J Biol Chem. 1987 Jan 15;262(2):762-6 PubMed
Nature. 2012 Mar 21;485(7398):321-6 PubMed
Biophys J. 1999 May;76(5):2614-24 PubMed
Biochemistry. 2005 Jun 28;44(25):9168-78 PubMed
Eur J Biochem. 1987 Dec 30;170(1-2):413-20 PubMed
J Mol Endocrinol. 2009 May;42(5):371-9 PubMed
Chem Phys Lipids. 2013 Feb-Mar;167-168:62-9 PubMed
J Biol Chem. 1987 Jan 15;262(2):752-6 PubMed
Proc Natl Acad Sci U S A. 1986 Aug;83(16):6216-20 PubMed
Biochem J. 2004 Mar 1;378(Pt 2):281-92 PubMed
Colloids Surf B Biointerfaces. 2009 Oct 1;73(1):42-50 PubMed
Biochim Biophys Acta. 2012 Mar;1818(3):609-16 PubMed
Mol Pharmacol. 2006 Apr;69(4):1421-32 PubMed
J Biol Chem. 1994 Aug 12;269(32):20548-53 PubMed
Science. 2012 Jul 13;337(6091):232-6 PubMed
Biochim Biophys Acta. 1978 Nov 16;513(3):338-57 PubMed
Biochim Biophys Acta. 1978 Dec 15;515(4):367-94 PubMed
Biochim Biophys Acta. 2004 Nov 3;1666(1-2):62-87 PubMed
FEBS Lett. 1997 May 5;407(3):257-60 PubMed
Nature. 2012 May 16;485(7398):314-7 PubMed
BMC Cell Biol. 2012 Mar 19;13:6 PubMed
J Biol Chem. 1987 Jan 15;262(2):757-61 PubMed
Biophys J. 2003 Nov;85(5):3120-31 PubMed
Eur J Pharmacol. 2000 May 19;396(2-3):67-75 PubMed
Biochem Pharmacol. 2000 Sep 1;60(5):669-76 PubMed
Cell Mol Life Sci. 2000 Oct;57(11):1577-92 PubMed
Biophys J. 2007 Oct 15;93(8):2688-96 PubMed
J Phys Chem A. 2009 Jul 2;113(26):7235-43 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 2008 Sep;378(3):261-74 PubMed
Neurosci Lett. 2010 Mar 19;472(2):114-8 PubMed
Med Sci Monit. 2009 Apr;15(4):BR111-22 PubMed
Biochemistry. 1979 Nov 13;18(23):5213-23 PubMed
Nature. 2012 May 16;485(7398):400-4 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 2002 Nov;366(5):381-416 PubMed
Langmuir. 2007 Sep 25;23(20):10074-80 PubMed
Biochim Biophys Acta. 2004 Nov 3;1666(1-2):205-26 PubMed
Neuropharmacology. 2001 Sep;41(3):321-30 PubMed
Langmuir. 2010 Mar 2;26(5):3323-8 PubMed
Biochim Biophys Acta. 2011 May;1808(5):1309-18 PubMed
Cell Transplant. 2009;18(9):951-75 PubMed
J Pharmacol Exp Ther. 2006 Jun;317(3):1295-306 PubMed
Biochim Biophys Acta. 2011 Dec;1808(12):2819-29 PubMed
J Neurochem. 2001 Mar;76(6):1805-13 PubMed
J Comput Aided Mol Des. 1999 Jul;13(4):325-53 PubMed
Biophys J. 2000 Nov;79(5):2463-74 PubMed
Biophys J. 1994 Jan;66(1):120-32 PubMed
J Biol Chem. 1993 Nov 5;268(31):23055-8 PubMed
Science. 2002 Jun 7;296(5574):1821-5 PubMed
Biochimie. 2012 Jan;94(1):26-32 PubMed
Proc Natl Acad Sci U S A. 1979 Nov;76(11):5626-30 PubMed
J Pharmacol Exp Ther. 2001 Aug;298(2):840-7 PubMed
J Neurochem. 2003 Apr;85(1):34-49 PubMed
Biochem Pharmacol. 2007 Feb 15;73(4):534-49 PubMed
Biophys J. 2003 Sep;85(3):1647-55 PubMed
Biophys J. 1998 Aug;75(2):612-34 PubMed
Physiol Res. 2011;60(3):541-7 PubMed
Langmuir. 2010 May 18;26(10):7370-9 PubMed
Nat Rev Neurosci. 2007 Feb;8(2):128-40 PubMed
Biophys J. 2010 Aug 4;99(3):825-33 PubMed
Biophys J. 1991 Jul;60(1):179-89 PubMed