Functionalizable Antifouling Coatings as Tunable Platforms for the Stress-Driven Manipulation of Living Cell Machinery

. 2020 Aug 05 ; 10 (8) : . [epub] 20200805

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32764330

Grantová podpora
LQ100101902 Akademie Věd České Republiky - International
CZ.02.1.01/0.0/0.0/16_019/0000760 Ministerstvo Školství, Mládeže a Tělovýchovy - International

Cells are continuously sensing their microenvironment and subsequently respond to different physicochemical cues by the activation or inhibition of different signaling pathways. To study a very complex cellular response, it is necessary to diminish background environmental influences and highlight the particular event. However, surface-driven nonspecific interactions of the abundant biomolecules from the environment influence the targeted cell response significantly. Yes-associated protein (YAP) translocation may serve as a marker of human hepatocellular carcinoma (Huh7) cell responses to the extracellular matrix and surface-mediated stresses. Here, we propose a platform of tunable functionable antifouling poly(carboxybetain) (pCB)-based brushes to achieve a molecularly clean background for studying arginine, glycine, and aspartic acid (RGD)-induced YAP-connected mechanotransduction. Using two different sets of RGD-functionalized zwitterionic antifouling coatings with varying compositions of the antifouling layer, a clear correlation of YAP distribution with RGD functionalization concentrations was observed. On the other hand, commonly used surface passivation by the oligo(ethylene glycol)-based self-assembled monolayer (SAM) shows no potential to induce dependency of the YAP distribution on RGD concentrations. The results indicate that the antifouling background is a crucial component of surface-based cellular response studies, and pCB-based zwitterionic antifouling brush architectures may serve as a potential next-generation easily functionable surface platform for the monitoring and quantification of cellular processes.

Zobrazit více v PubMed

Wolfenson H., Yang B., Sheetz M.P. Steps in Mechanotransduction Pathways that Control Cell Morphology. Annu. Rev. Physiol. 2019;81:585–605. doi: 10.1146/annurev-physiol-021317-121245. PubMed DOI PMC

Lansky Z., Mutsafi Y., Houben L., Ilani T., Armony G., Wolf S.G., Fass D. 3D mapping of native extracellular matrix reveals cellular responses to the microenvironment. JSBX. 2019;1:100002. doi: 10.1016/j.yjsbx.2018.100002. PubMed DOI PMC

Cobbaut M., Karagil S., Bruno L., Diaz de la Loza M.D.C., Mackenzie F.E., Stolinski M., Elbediwy A. Dysfunctional Mechanotransduction through the YAP/TAZ/Hippo Pathway as a Feature of Chronic Disease. Cells. 2020;9:151. doi: 10.3390/cells9010151. PubMed DOI PMC

Gautrot J.E., Malmström J., Sundh M., Margadant C., Sonnenberg A., Sutherland D.S. The Nanoscale Geometrical Maturation of Focal Adhesions Controls Stem Cell Differentiation and Mechanotransduction. Nano Lett. 2014;14:3945–3952. doi: 10.1021/nl501248y. PubMed DOI

Martino F., Perestrelo A.R., Vinarský V., Pagliari S., Forte G. Cellular Mechanotransduction: From Tension to Function. Front. Physiol. 2018;9:824. doi: 10.3389/fphys.2018.00824. PubMed DOI PMC

Elbediwy A., Vincent-Mistiaen Z.I., Spencer-Dene B., Stone R.K., Boeing S., Wculek S.K., Cordero J., Tan E.H., Ridgway R., Brunton V.G., et al. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development. 2016;143:1674–1687. doi: 10.1242/dev.133728. PubMed DOI PMC

Mori M., Triboulet R., Mohseni M., Schlegelmilch K., Shrestha K., Camargo F.D., Gregory R.I. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer. Cell. 2014;156:893–906. doi: 10.1016/j.cell.2013.12.043. PubMed DOI PMC

Nardone G., Oliver-De La Cruz J., Vrbsky J., Martini C., Pribyl J., Skládal P., Pešl M., Caluori G., Pagliari S., Martino F., et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 2017;8:15321. doi: 10.1038/ncomms15321. PubMed DOI PMC

Piccolo S., Dupont S., Cordenonsi M. The biology of YAP/TAZ: Hippo signaling and beyond. Physiol. Rev. 2014;94:1287–1312. doi: 10.1152/physrev.00005.2014. PubMed DOI

Shreberk-Shaked M., Oren M. New insights into YAP/TAZ nucleo-cytoplasmic shuttling: New cancer therapeutic opportunities? Mol. Oncol. 2019;13:1335–1341. doi: 10.1002/1878-0261.12498. PubMed DOI PMC

Halder G., Dupont S., Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. cell Biol. 2012;13:591–600. doi: 10.1038/nrm3416. PubMed DOI

Schroeder M.C., Halder G. Regulation of the Hippo pathway by cell architecture and mechanical signals. Semin. Cell Dev. Biol. 2012;23:803–811. doi: 10.1016/j.semcdb.2012.06.001. PubMed DOI

Thomasy S.M., Morgan J.T., Wood J.A., Murphy C.J., Russell P. Substratum stiffness and latrunculin B modulate the gene expression of the mechanotransducers YAP and TAZ in human trabecular meshwork cells. Exp. Eye Res. 2013;113:66–73. doi: 10.1016/j.exer.2013.05.014. PubMed DOI PMC

Aragona M., Panciera T., Manfrin A., Giulitti S., Michielin F., Elvassore N., Dupont S., Piccolo S. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell. 2013;154:1047–1059. doi: 10.1016/j.cell.2013.07.042. PubMed DOI

Wada K., Itoga K., Okano T., Yonemura S., Sasaki H. Hippo pathway regulation by cell morphology and stress fibers. Development. 2011;138:3907–3914. doi: 10.1242/dev.070987. PubMed DOI

Gibson W.T., Gibson M.C. Cell topology, geometry, and morphogenesis in proliferating epithelia. Curr. Top. Dev. Biol. 2009;89:87–114. doi: 10.1016/s0070-2153(09)89004-2. PubMed DOI

Zhao B., Wei X., Li W., Udan R.S., Yang Q., Kim J., Xie J., Ikenoue T., Yu J., Li L., et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Gene. Dev. 2007;21:2747–2761. doi: 10.1101/gad.1602907. PubMed DOI PMC

Varelas X., Samavarchi-Tehrani P., Narimatsu M., Weiss A., Cockburn K., Larsen B.G., Rossant J., Wrana J.L. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev. Cell. 2010;19:831–844. doi: 10.1016/j.devcel.2010.11.012. PubMed DOI

Monteiro A.I., Kollmetz T., Malmstrom J. Engineered systems to study the synergistic signaling between integrin-mediated mechanotransduction and growth factors (Review) Biointerphases. 2018;13:06d302. doi: 10.1116/1.5045231. PubMed DOI

Poręba R., de los Santos Pereira A., Pola R., Jiang S., Pop-Georgievski O., Sedláková Z., Schönherr H. “Clickable” and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide-Specific Cell Attachment. Macromol. Biosci. 2020;20:1900354. doi: 10.1002/mabi.201900354. PubMed DOI

Goor O.J.G.M., Brouns J.E.P., Dankers P.Y.W. Introduction of anti-fouling coatings at the surface of supramolecular elastomeric materials via post-modification of reactive supramolecular additives. Polym. Chem. 2017;8:5228–5238. doi: 10.1039/C7PY00801E. DOI

Pape A.C.H., Ippel B.D., Dankers P.Y.W. Cell and Protein Fouling Properties of Polymeric Mixtures Containing Supramolecular Poly(ethylene glycol) Additives. Langmuir. 2017;33:4076–4082. doi: 10.1021/acs.langmuir.7b00467. PubMed DOI PMC

Yang F., Liu Y., Zhang Y., Ren B., Xu J., Zheng J. Synthesis and Characterization of Ultralow Fouling Poly(N-acryloyl-glycinamide) Brushes. Langmuir. 2017;33:13964–13972. doi: 10.1021/acs.langmuir.7b03435. PubMed DOI

Sun X., Wang H., Wang Y., Gui T., Wang K., Gao C. Creation of antifouling microarrays by photopolymerization of zwitterionic compounds for protein assay and cell patterning. Biosens. Bioelectro. 2018;102:63–69. doi: 10.1016/j.bios.2017.11.001. PubMed DOI

Leigh B.L., Cheng E., Xu L., Andresen C., Hansen M.R., Guymon C.A. Photopolymerizable Zwitterionic Polymer Patterns Control Cell Adhesion and Guide Neural Growth. Biomacromolecules. 2017;18:2389–2401. doi: 10.1021/acs.biomac.7b00579. PubMed DOI PMC

Hersel U., Dahmen C., Kessler H. RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24:4385–4415. doi: 10.1016/S0142-9612(03)00343-0. PubMed DOI

Chien H.W., Fu S.W., Shih A.Y., Tsai W.B. Modulation of the stemness and osteogenic differentiation of human mesenchymal stem cells by controlling RGD concentrations of poly(carboxybetaine) hydrogel. Biotechnol. J. 2014;9:1613–1623. doi: 10.1002/biot.201300433. PubMed DOI

Rodda A.E., Ercole F., Glattauer V., Gardiner J., Nisbet D.R., Healy K.E., Forsythe J.S., Meagher L. Low Fouling Electrospun Scaffolds with Clicked Bioactive Peptides for Specific Cell Attachment. Biomacromolecules. 2015;16:2109–2118. doi: 10.1021/acs.biomac.5b00483. PubMed DOI

Vaisocherová-Lísalová H., Víšová I., Ermini M.L., Špringer T., Song X.C., Mrázek J., Lamačová J., Scott Lynn N., Šedivák P., Homola J. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosens. Bioelectron. 2016;80:84–90. doi: 10.1016/j.bios.2016.01.040. PubMed DOI

Vaisocherova H., Sipova H., Visova I., Bockova M., Springer T., Laura Ermini M., Song X., Krejcik Z., Chrastinova L., Pastva O., et al. Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor. Biosens. Bioelectron. 2015;70:226–231. doi: 10.1016/j.bios.2015.03.038. PubMed DOI

Víšová I., Smolková B., Uzhytchak M., Vrabcová M., Zhigunova Y., Houska M., Surman F., de los Santos Pereira A., Lunov O., Dejneka A., et al. Modulation of Living Cell Behavior with Ultra-Low Fouling Polymer Brush Interfaces. Macromol. Biosci. 2020;20:1900351. doi: 10.1002/mabi.201900351. PubMed DOI

Lokanathan A.R., Zhang S., Regina V.R., Cole M.A., Ogaki R., Dong M., Besenbacher F., Meyer R.L., Kingshott P. Mixed poly (ethylene glycol) and oligo (ethylene glycol) layers on gold as nonfouling surfaces created by backfilling. Biointerphases. 2011;6:180–188. doi: 10.1116/1.3647506. PubMed DOI

Vaisocherova H., Brynda E., Homola J. Functionalizable low-fouling coatings for label-free biosensing in complex biological media: Advances and applications. Anal. Bioanal. Chem. 2015;407:3927–3953. doi: 10.1007/s00216-015-8606-5. PubMed DOI

Lísalová H., Brynda E., Houska M., Víšová I., Mrkvová K., Song X.C., Gedeonová E., Surman F., Riedel T., Pop-Georgievski O., et al. Ultralow-Fouling Behavior of Biorecognition Coatings Based on Carboxy-Functional Brushes of Zwitterionic Homo- and Copolymers in Blood Plasma: Functionalization Matters. Anal. Chem. 2017;89:3524–3531. doi: 10.1021/acs.analchem.6b04731. PubMed DOI

Smolkova B., Lunova M., Lynnyk A., Uzhytchak M., Churpita O., Jirsa M., Kubinova S., Lunov O., Dejneka A. Non-Thermal Plasma, as a New Physicochemical Source, to Induce Redox Imbalance and Subsequent Cell Death in Liver Cancer Cell Lines. Cell. Physiol. Biochem. 2019;52:119–140. doi: 10.33594/000000009. PubMed DOI

March S., Ramanan V., Trehan K., Ng S., Galstian A., Gural N., Scull M.A., Shlomai A., Mota M.M., Fleming H.E., et al. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat. Protoc. 2015;10:2027–2053. doi: 10.1038/nprot.2015.128. PubMed DOI PMC

Jelinek M., Kocourek T., Jurek K., Jelinek M., Smolková B., Uzhytchak M., Lunov O. Preliminary Study of Ge-DLC Nanocomposite Biomaterials Prepared by Laser Codeposition. Nanomaterials. 2019;9:451. doi: 10.3390/nano9030451. PubMed DOI PMC

Heggestad J.T., Fontes C.M., Joh D.Y., Hucknall A.M., Chilkoti A. In Pursuit of Zero 2.0: Recent Developments in Nonfouling Polymer Brushes for Immunoassays. Adv. Mater. 2020;32:1903285. doi: 10.1002/adma.201903285. PubMed DOI PMC

Jiang C., Wang G., Hein R., Liu N., Luo X., Davis J.J. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem. Rev. 2020;120:3852–3889. doi: 10.1021/acs.chemrev.9b00739. PubMed DOI

Tocce E.J., Broderick A.H., Murphy K.C., Liliensiek S.J., Murphy C.J., Lynn D.M., Nealey P.F. Functionalization of reactive polymer multilayers with RGD and an antifouling motif: RGD density provides control over human corneal epithelial cell-substrate interactions. J. Biomed. Mater. Res. Part A. 2012;100:84–93. doi: 10.1002/jbm.a.33233. PubMed DOI PMC

Yu S., Zuo X., Shen T., Duan Y., Mao Z., Gao C. A density gradient of VAPG peptides on a cell-resisting surface achieves selective adhesion and directional migration of smooth muscle cells over fibroblasts. Acta Biomater. 2018;72:70–81. doi: 10.1016/j.actbio.2018.04.005. PubMed DOI

Vaisocherová-Lísalová H., Surman F., Víšová I., Vala M., Špringer T., Ermini M.L., Šípová H., Šedivák P., Houska M., Riedel T., et al. Copolymer Brush-Based Ultralow-Fouling Biorecognition Surface Platform for Food Safety. Anal. Chem. 2016;88:10533–10539. doi: 10.1021/acs.analchem.6b02617. PubMed DOI

Vaisocherova H., Sevcu V., Adam P., Spackova B., Hegnerova K., Pereira A.D., Rodriguez-Emmenegger C., Riedel T., Houska M., Brynda E., et al. Functionalized ultra-low fouling carboxy- and hydroxy-functional surface platforms: Functionalization capacity, biorecognition capability and resistance to fouling from undiluted biological media. Biosens. Bioelectron. 2014;51:150–157. doi: 10.1016/j.bios.2013.07.015. PubMed DOI

Brault N.D., White A.D., Taylor A.D., Yu Q., Jiang S. Directly Functionalizable Surface Platform for Protein Arrays in Undiluted Human Blood Plasma. Anal. Chem. 2013;85:1447–1453. doi: 10.1021/ac303462u. PubMed DOI

Low B.C., Pan C.Q., Shivashankar G.V., Bershadsky A., Sudol M., Sheetz M. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett. 2014;588:2663–2670. doi: 10.1016/j.febslet.2014.04.012. PubMed DOI

Dupont S., Morsut L., Aragona M., Enzo E., Giulitti S., Cordenonsi M., Zanconato F., Le Digabel J., Forcato M., Bicciato S., et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179–183. doi: 10.1038/nature10137. PubMed DOI

Lin X., Jain P., Wu K., Hong D., Hung H.-C., O’Kelly M.B., Li B., Zhang P., Yuan Z., Jiang S. Ultralow Fouling and Functionalizable Surface Chemistry Based on Zwitterionic Carboxybetaine Random Copolymers. Langmuir. 2019;35:1544–1551. doi: 10.1021/acs.langmuir.8b02540. PubMed DOI PMC

Abercrombie M. Contact inhibition and malignancy. Nature. 1979;281:259–262. doi: 10.1038/281259a0. PubMed DOI

Flammang P., Santos R., Aldred N., Gorb S., editors. Biological and Biomimetic Adhesives: Challenges and Opportunities. Royal Society of Chemistry; London, UK: 2013.

Kolahi K.S., Donjacour A., Liu X., Lin W., Simbulan R.K., Bloise E., Maltepe E., Rinaudo E. Effect of Substrate Stiffness on Early Mouse Embryo Development. PLoS ONE. 2012;7:e41717. doi: 10.1371/journal.pone.0041717. PubMed DOI PMC

Durán-Pastén M.L., Cortes D., Valencia-Amaya A.E., King S., González-Gómez G.H., Hautefeuille M. Cell Culture Platforms with Controllable Stiffness for Chick Embryonic Cardiomyocytes. Biomimetics. 2019;4:33. doi: 10.3390/biomimetics4020033. PubMed DOI PMC

Moroishi T., Hansen C.G., Guan K.L. The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer. 2015;15:73–79. doi: 10.1038/nrc3876. PubMed DOI PMC

Víšová I., Vrabcová M., Forinová M., Zhignuova Y., Mironov V., Houska M., Bittrich E., Eichhorn K.-J., Hashim H., Schovanek P., et al. Surface Preconditioning Influences the Antifouling Capabilities of Zwitterionic and Nonionic Polymer Brushes. Langmuir. 2020 doi: 10.1021/acs.langmuir.0c00996. in press. PubMed DOI

Vaisocherová H., Zhang Z., Yang W., Cao Z., Cheng G., Taylor A.D., Piliarik M., Homola J., Jiang S. Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma-Material selection and protein immobilization optimization. Biosens. Bioelectron. 2008;24:1924–1930. doi: 10.1016/j.bios.2008.09.035. PubMed DOI

Jiang S., Cao Z. Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Adv. Mater. 2010;22:920–932. doi: 10.1002/adma.200901407. PubMed DOI

Li B., Yuan Z., He Y., Hung H.-C., Jiang S. Zwitterionic Nanoconjugate Enables Safe and Efficient Lymphatic Drug Delivery. Nano Lett. 2020;20:4693–4699. doi: 10.1021/acs.nanolett.0c01713. PubMed DOI

Li B., Yuan Z., Jain P., Hung H.-C., He Y., Lin X., McMullen P., Jiang S. De Novo Design of Functional Zwitterionic Biomimetic Material for Immunomodulation. Sci. Adv. 2020;6:eaba0754. doi: 10.1126/sciadv.aba0754. PubMed DOI PMC

Lin X., Boit M.O., Wu K., Jain P., Liu E.J., Hsieh Y.-F., Zhou O., Li B., Hung H.-C., Jiang S. Zwitterionic carboxybetaine polymers extend the shelf-life of human platelets. Acta Biomater. 2020;109:51–60. doi: 10.1016/j.actbio.2020.03.032. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...