Functionalizable Antifouling Coatings as Tunable Platforms for the Stress-Driven Manipulation of Living Cell Machinery
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
LQ100101902
Akademie Věd České Republiky - International
CZ.02.1.01/0.0/0.0/16_019/0000760
Ministerstvo Školství, Mládeže a Tělovýchovy - International
PubMed
32764330
PubMed Central
PMC7464033
DOI
10.3390/biom10081146
PII: biom10081146
Knihovny.cz E-zdroje
- Klíčová slova
- antifouling polymer brushes, cell mechanotransduction, cell signaling, functional biointerfaces, surface modification, zwitterionic material,
- MeSH
- akrylamidy chemie MeSH
- biokompatibilní potahované materiály chemie MeSH
- bioznečištění prevence a kontrola MeSH
- buněčný převod mechanických signálů * MeSH
- extracelulární matrix metabolismus MeSH
- lidé MeSH
- mechanický stres MeSH
- nádorové buněčné linie MeSH
- oligopeptidy chemie MeSH
- protoonkogenní proteiny c-yes metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akrylamidy MeSH
- arginyl-glycyl-aspartic acid MeSH Prohlížeč
- biokompatibilní potahované materiály MeSH
- oligopeptidy MeSH
- protoonkogenní proteiny c-yes MeSH
- YES1 protein, human MeSH Prohlížeč
- zwitterion carboxybetaine acrylamide MeSH Prohlížeč
Cells are continuously sensing their microenvironment and subsequently respond to different physicochemical cues by the activation or inhibition of different signaling pathways. To study a very complex cellular response, it is necessary to diminish background environmental influences and highlight the particular event. However, surface-driven nonspecific interactions of the abundant biomolecules from the environment influence the targeted cell response significantly. Yes-associated protein (YAP) translocation may serve as a marker of human hepatocellular carcinoma (Huh7) cell responses to the extracellular matrix and surface-mediated stresses. Here, we propose a platform of tunable functionable antifouling poly(carboxybetain) (pCB)-based brushes to achieve a molecularly clean background for studying arginine, glycine, and aspartic acid (RGD)-induced YAP-connected mechanotransduction. Using two different sets of RGD-functionalized zwitterionic antifouling coatings with varying compositions of the antifouling layer, a clear correlation of YAP distribution with RGD functionalization concentrations was observed. On the other hand, commonly used surface passivation by the oligo(ethylene glycol)-based self-assembled monolayer (SAM) shows no potential to induce dependency of the YAP distribution on RGD concentrations. The results indicate that the antifouling background is a crucial component of surface-based cellular response studies, and pCB-based zwitterionic antifouling brush architectures may serve as a potential next-generation easily functionable surface platform for the monitoring and quantification of cellular processes.
Zobrazit více v PubMed
Wolfenson H., Yang B., Sheetz M.P. Steps in Mechanotransduction Pathways that Control Cell Morphology. Annu. Rev. Physiol. 2019;81:585–605. doi: 10.1146/annurev-physiol-021317-121245. PubMed DOI PMC
Lansky Z., Mutsafi Y., Houben L., Ilani T., Armony G., Wolf S.G., Fass D. 3D mapping of native extracellular matrix reveals cellular responses to the microenvironment. JSBX. 2019;1:100002. doi: 10.1016/j.yjsbx.2018.100002. PubMed DOI PMC
Cobbaut M., Karagil S., Bruno L., Diaz de la Loza M.D.C., Mackenzie F.E., Stolinski M., Elbediwy A. Dysfunctional Mechanotransduction through the YAP/TAZ/Hippo Pathway as a Feature of Chronic Disease. Cells. 2020;9:151. doi: 10.3390/cells9010151. PubMed DOI PMC
Gautrot J.E., Malmström J., Sundh M., Margadant C., Sonnenberg A., Sutherland D.S. The Nanoscale Geometrical Maturation of Focal Adhesions Controls Stem Cell Differentiation and Mechanotransduction. Nano Lett. 2014;14:3945–3952. doi: 10.1021/nl501248y. PubMed DOI
Martino F., Perestrelo A.R., Vinarský V., Pagliari S., Forte G. Cellular Mechanotransduction: From Tension to Function. Front. Physiol. 2018;9:824. doi: 10.3389/fphys.2018.00824. PubMed DOI PMC
Elbediwy A., Vincent-Mistiaen Z.I., Spencer-Dene B., Stone R.K., Boeing S., Wculek S.K., Cordero J., Tan E.H., Ridgway R., Brunton V.G., et al. Integrin signalling regulates YAP and TAZ to control skin homeostasis. Development. 2016;143:1674–1687. doi: 10.1242/dev.133728. PubMed DOI PMC
Mori M., Triboulet R., Mohseni M., Schlegelmilch K., Shrestha K., Camargo F.D., Gregory R.I. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer. Cell. 2014;156:893–906. doi: 10.1016/j.cell.2013.12.043. PubMed DOI PMC
Nardone G., Oliver-De La Cruz J., Vrbsky J., Martini C., Pribyl J., Skládal P., Pešl M., Caluori G., Pagliari S., Martino F., et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 2017;8:15321. doi: 10.1038/ncomms15321. PubMed DOI PMC
Piccolo S., Dupont S., Cordenonsi M. The biology of YAP/TAZ: Hippo signaling and beyond. Physiol. Rev. 2014;94:1287–1312. doi: 10.1152/physrev.00005.2014. PubMed DOI
Shreberk-Shaked M., Oren M. New insights into YAP/TAZ nucleo-cytoplasmic shuttling: New cancer therapeutic opportunities? Mol. Oncol. 2019;13:1335–1341. doi: 10.1002/1878-0261.12498. PubMed DOI PMC
Halder G., Dupont S., Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. cell Biol. 2012;13:591–600. doi: 10.1038/nrm3416. PubMed DOI
Schroeder M.C., Halder G. Regulation of the Hippo pathway by cell architecture and mechanical signals. Semin. Cell Dev. Biol. 2012;23:803–811. doi: 10.1016/j.semcdb.2012.06.001. PubMed DOI
Thomasy S.M., Morgan J.T., Wood J.A., Murphy C.J., Russell P. Substratum stiffness and latrunculin B modulate the gene expression of the mechanotransducers YAP and TAZ in human trabecular meshwork cells. Exp. Eye Res. 2013;113:66–73. doi: 10.1016/j.exer.2013.05.014. PubMed DOI PMC
Aragona M., Panciera T., Manfrin A., Giulitti S., Michielin F., Elvassore N., Dupont S., Piccolo S. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell. 2013;154:1047–1059. doi: 10.1016/j.cell.2013.07.042. PubMed DOI
Wada K., Itoga K., Okano T., Yonemura S., Sasaki H. Hippo pathway regulation by cell morphology and stress fibers. Development. 2011;138:3907–3914. doi: 10.1242/dev.070987. PubMed DOI
Gibson W.T., Gibson M.C. Cell topology, geometry, and morphogenesis in proliferating epithelia. Curr. Top. Dev. Biol. 2009;89:87–114. doi: 10.1016/s0070-2153(09)89004-2. PubMed DOI
Zhao B., Wei X., Li W., Udan R.S., Yang Q., Kim J., Xie J., Ikenoue T., Yu J., Li L., et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Gene. Dev. 2007;21:2747–2761. doi: 10.1101/gad.1602907. PubMed DOI PMC
Varelas X., Samavarchi-Tehrani P., Narimatsu M., Weiss A., Cockburn K., Larsen B.G., Rossant J., Wrana J.L. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-beta-SMAD pathway. Dev. Cell. 2010;19:831–844. doi: 10.1016/j.devcel.2010.11.012. PubMed DOI
Monteiro A.I., Kollmetz T., Malmstrom J. Engineered systems to study the synergistic signaling between integrin-mediated mechanotransduction and growth factors (Review) Biointerphases. 2018;13:06d302. doi: 10.1116/1.5045231. PubMed DOI
Poręba R., de los Santos Pereira A., Pola R., Jiang S., Pop-Georgievski O., Sedláková Z., Schönherr H. “Clickable” and Antifouling Block Copolymer Brushes as a Versatile Platform for Peptide-Specific Cell Attachment. Macromol. Biosci. 2020;20:1900354. doi: 10.1002/mabi.201900354. PubMed DOI
Goor O.J.G.M., Brouns J.E.P., Dankers P.Y.W. Introduction of anti-fouling coatings at the surface of supramolecular elastomeric materials via post-modification of reactive supramolecular additives. Polym. Chem. 2017;8:5228–5238. doi: 10.1039/C7PY00801E. DOI
Pape A.C.H., Ippel B.D., Dankers P.Y.W. Cell and Protein Fouling Properties of Polymeric Mixtures Containing Supramolecular Poly(ethylene glycol) Additives. Langmuir. 2017;33:4076–4082. doi: 10.1021/acs.langmuir.7b00467. PubMed DOI PMC
Yang F., Liu Y., Zhang Y., Ren B., Xu J., Zheng J. Synthesis and Characterization of Ultralow Fouling Poly(N-acryloyl-glycinamide) Brushes. Langmuir. 2017;33:13964–13972. doi: 10.1021/acs.langmuir.7b03435. PubMed DOI
Sun X., Wang H., Wang Y., Gui T., Wang K., Gao C. Creation of antifouling microarrays by photopolymerization of zwitterionic compounds for protein assay and cell patterning. Biosens. Bioelectro. 2018;102:63–69. doi: 10.1016/j.bios.2017.11.001. PubMed DOI
Leigh B.L., Cheng E., Xu L., Andresen C., Hansen M.R., Guymon C.A. Photopolymerizable Zwitterionic Polymer Patterns Control Cell Adhesion and Guide Neural Growth. Biomacromolecules. 2017;18:2389–2401. doi: 10.1021/acs.biomac.7b00579. PubMed DOI PMC
Hersel U., Dahmen C., Kessler H. RGD modified polymers: Biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24:4385–4415. doi: 10.1016/S0142-9612(03)00343-0. PubMed DOI
Chien H.W., Fu S.W., Shih A.Y., Tsai W.B. Modulation of the stemness and osteogenic differentiation of human mesenchymal stem cells by controlling RGD concentrations of poly(carboxybetaine) hydrogel. Biotechnol. J. 2014;9:1613–1623. doi: 10.1002/biot.201300433. PubMed DOI
Rodda A.E., Ercole F., Glattauer V., Gardiner J., Nisbet D.R., Healy K.E., Forsythe J.S., Meagher L. Low Fouling Electrospun Scaffolds with Clicked Bioactive Peptides for Specific Cell Attachment. Biomacromolecules. 2015;16:2109–2118. doi: 10.1021/acs.biomac.5b00483. PubMed DOI
Vaisocherová-Lísalová H., Víšová I., Ermini M.L., Špringer T., Song X.C., Mrázek J., Lamačová J., Scott Lynn N., Šedivák P., Homola J. Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosens. Bioelectron. 2016;80:84–90. doi: 10.1016/j.bios.2016.01.040. PubMed DOI
Vaisocherova H., Sipova H., Visova I., Bockova M., Springer T., Laura Ermini M., Song X., Krejcik Z., Chrastinova L., Pastva O., et al. Rapid and sensitive detection of multiple microRNAs in cell lysate by low-fouling surface plasmon resonance biosensor. Biosens. Bioelectron. 2015;70:226–231. doi: 10.1016/j.bios.2015.03.038. PubMed DOI
Víšová I., Smolková B., Uzhytchak M., Vrabcová M., Zhigunova Y., Houska M., Surman F., de los Santos Pereira A., Lunov O., Dejneka A., et al. Modulation of Living Cell Behavior with Ultra-Low Fouling Polymer Brush Interfaces. Macromol. Biosci. 2020;20:1900351. doi: 10.1002/mabi.201900351. PubMed DOI
Lokanathan A.R., Zhang S., Regina V.R., Cole M.A., Ogaki R., Dong M., Besenbacher F., Meyer R.L., Kingshott P. Mixed poly (ethylene glycol) and oligo (ethylene glycol) layers on gold as nonfouling surfaces created by backfilling. Biointerphases. 2011;6:180–188. doi: 10.1116/1.3647506. PubMed DOI
Vaisocherova H., Brynda E., Homola J. Functionalizable low-fouling coatings for label-free biosensing in complex biological media: Advances and applications. Anal. Bioanal. Chem. 2015;407:3927–3953. doi: 10.1007/s00216-015-8606-5. PubMed DOI
Lísalová H., Brynda E., Houska M., Víšová I., Mrkvová K., Song X.C., Gedeonová E., Surman F., Riedel T., Pop-Georgievski O., et al. Ultralow-Fouling Behavior of Biorecognition Coatings Based on Carboxy-Functional Brushes of Zwitterionic Homo- and Copolymers in Blood Plasma: Functionalization Matters. Anal. Chem. 2017;89:3524–3531. doi: 10.1021/acs.analchem.6b04731. PubMed DOI
Smolkova B., Lunova M., Lynnyk A., Uzhytchak M., Churpita O., Jirsa M., Kubinova S., Lunov O., Dejneka A. Non-Thermal Plasma, as a New Physicochemical Source, to Induce Redox Imbalance and Subsequent Cell Death in Liver Cancer Cell Lines. Cell. Physiol. Biochem. 2019;52:119–140. doi: 10.33594/000000009. PubMed DOI
March S., Ramanan V., Trehan K., Ng S., Galstian A., Gural N., Scull M.A., Shlomai A., Mota M.M., Fleming H.E., et al. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat. Protoc. 2015;10:2027–2053. doi: 10.1038/nprot.2015.128. PubMed DOI PMC
Jelinek M., Kocourek T., Jurek K., Jelinek M., Smolková B., Uzhytchak M., Lunov O. Preliminary Study of Ge-DLC Nanocomposite Biomaterials Prepared by Laser Codeposition. Nanomaterials. 2019;9:451. doi: 10.3390/nano9030451. PubMed DOI PMC
Heggestad J.T., Fontes C.M., Joh D.Y., Hucknall A.M., Chilkoti A. In Pursuit of Zero 2.0: Recent Developments in Nonfouling Polymer Brushes for Immunoassays. Adv. Mater. 2020;32:1903285. doi: 10.1002/adma.201903285. PubMed DOI PMC
Jiang C., Wang G., Hein R., Liu N., Luo X., Davis J.J. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem. Rev. 2020;120:3852–3889. doi: 10.1021/acs.chemrev.9b00739. PubMed DOI
Tocce E.J., Broderick A.H., Murphy K.C., Liliensiek S.J., Murphy C.J., Lynn D.M., Nealey P.F. Functionalization of reactive polymer multilayers with RGD and an antifouling motif: RGD density provides control over human corneal epithelial cell-substrate interactions. J. Biomed. Mater. Res. Part A. 2012;100:84–93. doi: 10.1002/jbm.a.33233. PubMed DOI PMC
Yu S., Zuo X., Shen T., Duan Y., Mao Z., Gao C. A density gradient of VAPG peptides on a cell-resisting surface achieves selective adhesion and directional migration of smooth muscle cells over fibroblasts. Acta Biomater. 2018;72:70–81. doi: 10.1016/j.actbio.2018.04.005. PubMed DOI
Vaisocherová-Lísalová H., Surman F., Víšová I., Vala M., Špringer T., Ermini M.L., Šípová H., Šedivák P., Houska M., Riedel T., et al. Copolymer Brush-Based Ultralow-Fouling Biorecognition Surface Platform for Food Safety. Anal. Chem. 2016;88:10533–10539. doi: 10.1021/acs.analchem.6b02617. PubMed DOI
Vaisocherova H., Sevcu V., Adam P., Spackova B., Hegnerova K., Pereira A.D., Rodriguez-Emmenegger C., Riedel T., Houska M., Brynda E., et al. Functionalized ultra-low fouling carboxy- and hydroxy-functional surface platforms: Functionalization capacity, biorecognition capability and resistance to fouling from undiluted biological media. Biosens. Bioelectron. 2014;51:150–157. doi: 10.1016/j.bios.2013.07.015. PubMed DOI
Brault N.D., White A.D., Taylor A.D., Yu Q., Jiang S. Directly Functionalizable Surface Platform for Protein Arrays in Undiluted Human Blood Plasma. Anal. Chem. 2013;85:1447–1453. doi: 10.1021/ac303462u. PubMed DOI
Low B.C., Pan C.Q., Shivashankar G.V., Bershadsky A., Sudol M., Sheetz M. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett. 2014;588:2663–2670. doi: 10.1016/j.febslet.2014.04.012. PubMed DOI
Dupont S., Morsut L., Aragona M., Enzo E., Giulitti S., Cordenonsi M., Zanconato F., Le Digabel J., Forcato M., Bicciato S., et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179–183. doi: 10.1038/nature10137. PubMed DOI
Lin X., Jain P., Wu K., Hong D., Hung H.-C., O’Kelly M.B., Li B., Zhang P., Yuan Z., Jiang S. Ultralow Fouling and Functionalizable Surface Chemistry Based on Zwitterionic Carboxybetaine Random Copolymers. Langmuir. 2019;35:1544–1551. doi: 10.1021/acs.langmuir.8b02540. PubMed DOI PMC
Abercrombie M. Contact inhibition and malignancy. Nature. 1979;281:259–262. doi: 10.1038/281259a0. PubMed DOI
Flammang P., Santos R., Aldred N., Gorb S., editors. Biological and Biomimetic Adhesives: Challenges and Opportunities. Royal Society of Chemistry; London, UK: 2013.
Kolahi K.S., Donjacour A., Liu X., Lin W., Simbulan R.K., Bloise E., Maltepe E., Rinaudo E. Effect of Substrate Stiffness on Early Mouse Embryo Development. PLoS ONE. 2012;7:e41717. doi: 10.1371/journal.pone.0041717. PubMed DOI PMC
Durán-Pastén M.L., Cortes D., Valencia-Amaya A.E., King S., González-Gómez G.H., Hautefeuille M. Cell Culture Platforms with Controllable Stiffness for Chick Embryonic Cardiomyocytes. Biomimetics. 2019;4:33. doi: 10.3390/biomimetics4020033. PubMed DOI PMC
Moroishi T., Hansen C.G., Guan K.L. The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer. 2015;15:73–79. doi: 10.1038/nrc3876. PubMed DOI PMC
Víšová I., Vrabcová M., Forinová M., Zhignuova Y., Mironov V., Houska M., Bittrich E., Eichhorn K.-J., Hashim H., Schovanek P., et al. Surface Preconditioning Influences the Antifouling Capabilities of Zwitterionic and Nonionic Polymer Brushes. Langmuir. 2020 doi: 10.1021/acs.langmuir.0c00996. in press. PubMed DOI
Vaisocherová H., Zhang Z., Yang W., Cao Z., Cheng G., Taylor A.D., Piliarik M., Homola J., Jiang S. Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma-Material selection and protein immobilization optimization. Biosens. Bioelectron. 2008;24:1924–1930. doi: 10.1016/j.bios.2008.09.035. PubMed DOI
Jiang S., Cao Z. Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications. Adv. Mater. 2010;22:920–932. doi: 10.1002/adma.200901407. PubMed DOI
Li B., Yuan Z., He Y., Hung H.-C., Jiang S. Zwitterionic Nanoconjugate Enables Safe and Efficient Lymphatic Drug Delivery. Nano Lett. 2020;20:4693–4699. doi: 10.1021/acs.nanolett.0c01713. PubMed DOI
Li B., Yuan Z., Jain P., Hung H.-C., He Y., Lin X., McMullen P., Jiang S. De Novo Design of Functional Zwitterionic Biomimetic Material for Immunomodulation. Sci. Adv. 2020;6:eaba0754. doi: 10.1126/sciadv.aba0754. PubMed DOI PMC
Lin X., Boit M.O., Wu K., Jain P., Liu E.J., Hsieh Y.-F., Zhou O., Li B., Hung H.-C., Jiang S. Zwitterionic carboxybetaine polymers extend the shelf-life of human platelets. Acta Biomater. 2020;109:51–60. doi: 10.1016/j.actbio.2020.03.032. PubMed DOI