The formation of biomolecular coronas around nanoparticles as soon as they come in contact with biological media is nowadays well accepted. The self-developed biological outer surfaces can affect the targeting capability of the colloidal carriers as well as their cytotoxicity and cellular uptake behavior. In this framework, we explored the structural features and biological consequences of protein coronas around block copolymer assemblies consisting of a common pH-responsive core made by poly[2-(diisopropylamino) ethyl methacrylate] (PDPA) and hydrophilic shells of different chemical natures: zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) or highly hydrophilic poly(ethylene oxide) (PEO) and poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA). We demonstrated the presence of ∼50 nm protein coronas around the nanoparticles regardless of the chemical nature of the polymeric shells. The thickness is understood as the sum of the soft and hard layers and it is the actual interface seen by the cells. Although the soft corona composition is difficult to determine because the proteins are loosely bound to the outer surface of the assemblies, the tightly bound proteins (hard corona) could be identified and quantified. The compositional analysis of the hard corona demonstrated that human serum albumin (HSA), immunoglobulin G (IgG) and fibrinogen are the main components of the protein coronas, and serotransferrin is present particularly in the protein corona of the zwitterionic-stabilized assemblies. The protein coronas substantially reduce the cellular uptake of the colloidal particles due to their increased size and the presence of HSA which is known to reduce nanoparticle-cell adhesion. On the other hand, their existence also reduces the levels of cytotoxicity of the polymeric assemblies, highlighting that protein coronas should not be always understood as artifacts that need to be eliminated due to their positive outputs.
- MeSH
- Cell Adhesion MeSH
- Hydrogen-Ion Concentration MeSH
- Humans MeSH
- Mechanical Phenomena * MeSH
- Nanoparticles chemistry MeSH
- Polymers chemistry MeSH
- Surface Properties MeSH
- Protein Corona chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Cells are continuously sensing their microenvironment and subsequently respond to different physicochemical cues by the activation or inhibition of different signaling pathways. To study a very complex cellular response, it is necessary to diminish background environmental influences and highlight the particular event. However, surface-driven nonspecific interactions of the abundant biomolecules from the environment influence the targeted cell response significantly. Yes-associated protein (YAP) translocation may serve as a marker of human hepatocellular carcinoma (Huh7) cell responses to the extracellular matrix and surface-mediated stresses. Here, we propose a platform of tunable functionable antifouling poly(carboxybetain) (pCB)-based brushes to achieve a molecularly clean background for studying arginine, glycine, and aspartic acid (RGD)-induced YAP-connected mechanotransduction. Using two different sets of RGD-functionalized zwitterionic antifouling coatings with varying compositions of the antifouling layer, a clear correlation of YAP distribution with RGD functionalization concentrations was observed. On the other hand, commonly used surface passivation by the oligo(ethylene glycol)-based self-assembled monolayer (SAM) shows no potential to induce dependency of the YAP distribution on RGD concentrations. The results indicate that the antifouling background is a crucial component of surface-based cellular response studies, and pCB-based zwitterionic antifouling brush architectures may serve as a potential next-generation easily functionable surface platform for the monitoring and quantification of cellular processes.
- MeSH
- Acrylamides chemistry MeSH
- Coated Materials, Biocompatible chemistry MeSH
- Biofouling prevention & control MeSH
- Mechanotransduction, Cellular * MeSH
- Extracellular Matrix metabolism MeSH
- Humans MeSH
- Stress, Mechanical MeSH
- Cell Line, Tumor MeSH
- Oligopeptides chemistry MeSH
- Proto-Oncogene Proteins c-yes metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Ring cleavage of cyclic ether substituents attached to a boron cage via an oxonium oxygen atom are amongst the most versatile methods for conjoining boron closo-cages with organic functional groups. Here we focus on much less tackled chemistry of the 11-vertex zwitterionic compound [10-(O-(CH2-CH2)2O)-nido-7,8-C2B9H11] (1), which is the only known representative of cyclic ether substitution at nido-cages, and explore the scope for the use of this zwitterion 1 in reactions with various types of nucleophiles including bifunctional ones. Most of the nitrogen, oxygen, halogen, and sulphur nucleophiles studied react via nucleophilic substitution at the C1 atom of the dioxane ring, followed by its cleavage that produces six atom chain between the cage and the respective organic moiety. We also report the differences in reactivity of this nido-cage system with the simplest oxygen nucleophile, i.e., OH-. With compound 1, reaction proceeds in two possible directions, either via typical ring cleavage, or by replacement of the whole dioxane ring with -OH at higher temperatures. Furthermore, an easy deprotonation of the hydrogen bridge in 1 was observed that proceeds even in diluted aqueous KOH. We believe this knowledge can be further applied in the design of functional molecules, materials, and drugs.
Ultra-low fouling and functionalizable coatings represent emerging surface platforms for various analytical and biomedical applications such as those involving examination of cellular interactions in their native environments. Ultra-low fouling surface platforms as advanced interfaces enabling modulation of behavior of living cells via tuning surface physicochemical properties are presented and studied. The state-of-art ultra-low fouling surface-grafted polymer brushes of zwitterionic poly(carboxybetaine acrylamide), nonionic poly(N-(2-hydroxypropyl)methacrylamide), and random copolymers of carboxybetaine methacrylamide (CBMAA) and HPMAA [p(CBMAA-co-HPMAA)] with tunable molar contents of CBMAA and HPMAA are employed. Using a model Huh7 cell line, a systematic study of surface wettability, swelling, and charge effects on the cell growth, shape, and cytoskeleton distribution is performed. This study reveals that ultra-low fouling interfaces with a high content of zwitterionic moieties (>65 mol%) modulate cell behavior in a distinctly different way compared to coatings with a high content of nonionic HPMAA. These differences are attributed mostly to the surface hydration capabilities. The results demonstrate a high potential of carboxybetaine-rich ultra-low fouling surfaces with high hydration capabilities and minimum background signal interferences to create next-generation bioresponsive interfaces for advanced studies of living objects.
- MeSH
- Coated Materials, Biocompatible * chemistry pharmacology MeSH
- Cytoskeleton metabolism MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Polymers * chemistry pharmacology MeSH
- Wettability MeSH
- Materials Testing * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Lipid membranes can spontaneously organize their components into domains of different sizes and properties. The organization of membrane lipids into nanodomains might potentially play a role in vital functions of cells and organisms. Model membranes represent attractive systems to study lipid nanodomains, which cannot be directly addressed in living cells with the currently available methods. This review summarizes the knowledge on lipid nanodomains in model membranes and exposes how their specific character contrasts with large-scale phase separation. The overview on lipid nanodomains in membranes composed of diverse lipids (e.g., zwitterionic and anionic glycerophospholipids, ceramides, glycosphingolipids) and cholesterol aims to evidence the impact of chemical, electrostatic, and geometric properties of lipids on nanodomain formation. Furthermore, the effects of curvature, asymmetry, and ions on membrane nanodomains are shown to be highly relevant aspects that may also modulate lipid nanodomains in cellular membranes. Potential mechanisms responsible for the formation and dynamics of nanodomains are discussed with support from available theories and computational studies. A brief description of current fluorescence techniques and analytical tools that enabled progress in lipid nanodomain studies is also included. Further directions are proposed to successfully extend this research to cells.
Nonthrombogenic modifications of membranes for extracorporeal membrane oxygenators (ECMOs) are of key interest. The absence of hemocompatibility of these membranes and the need of anticoagulation of patients result in severe and potentially life-threatening complications during ECMO treatment. To address the lack of hemocompatibility of the membrane, surface modifications are developed, which act as barriers to protein adsorption on the membrane and, in this way, prevent activation of the coagulation cascade. The modifications are based on nonionic and zwitterionic polymer brushes grafted directly from poly(4-methyl-1-pentene) (TPX) membranes via single electron transfer-living radical polymerization. Notably, this work introduces the first example of well-controlled surface-initiated radical polymerization of zwitterionic brushes. The antifouling layers markedly increase the recalcification time (a proxy of initiation of coagulation) compared to bare TPX membranes. Furthermore, platelet and leukocyte adhesion is drastically decreased, rendering the ECMO membranes hemocompatible.
Zwitterionic methacrylate based polymeric monolithic columns were prepared in two-step polymerizations, with reduced polymerization times. Characteristic properties such as hydrodynamic permeability, porosity, retention factors, and pore size distribution charts were used for column evaluation. A scaffold column was fabricated by polymerization of poly(lauryl methacrylate-co-tetraethyleneglycol dimethacrylate) and was used without further modification as a support for a poly(N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl)ammonium betaine-co-bisphenol A glycerolate dimethacrylate) second monolith layer with zwitterionic functionality, for HILIC separations. An additional internal structure was formed by the second monolithic layer. The fabrication procedure was reproducible with RSD<5%. Field emission scanning electron microscopy has also been used to investigate column pore morphology, using a novel technique where the polymeric material is imaged directly, without coverage with a conducting film or particles. The new polar monolithic columns were used for HILIC separations of phenolic acids, flavones, nucleosides, and bases of nucleic acids, with similar efficiencies but different selectivities for zwitterionic methacrylate monolithic columns recently prepared by single step polymerization.
- MeSH
- Chemistry Techniques, Analytical instrumentation MeSH
- Chromatography, Liquid instrumentation MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Polymethacrylic Acids chemistry MeSH
- Nucleosides analysis MeSH
- Permeability MeSH
- Polymerization MeSH
- Polymers chemistry MeSH
- Porosity MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
While aliphatic 2-hydroxyalkanoic acids have been more or less successfully enantioseparated with various chiral stationary phases by HPLC and GC, analogous applications on underivatized aliphatic 3-hydroxyalkanoic acids are completely absent in the scientific literature. With the aim of closing this gap, the enantioseparation of 3-hydroxybutyric acid, 3-hydroxydecanoic acid and 3-hydroxymyristic acid has been performed with two ion-exchange type chiral stationary phases (CSPs): one containing the anion-exchange type tert-butyl carbamoyl quinine chiral selector motif (Chiralpak QN-AX), and the other carrying the new zwitterionic variant based on trans-(S,S)-2-aminocyclohexanesulfonic acid-derivatized quinine carbamate (Chiralpak ZWIX(+)) as the chiral selector and enantiodiscriminating element, respectively. The zwitterionic enantiorecognition material provided better results in terms of enantioselectivity and resolution compared to the anion-exchanger CSP at reduced retention times due to the intramolecular counterion effect imposed by the sulfonic acid moiety and its competition with the 3-hydroxyalkanoic acid analyte for ionic interaction at the quininium-anion exchanger site. It is thus recommended as the CSP of first choice for enantioseparations of the class of aliphatic 3-hydroxyalkanoic acids. With use of polar organic eluent composed of ACN/MeOH/AcOH - 95/5/0.05 (v/v/v), a good compromise in terms of analysis time and enantioresolution quality was accomplished. The major experimental variables have been investigated for optimization of the resolution and allowed to derive information on the enantiorecognition mechanism. Corresponding Chiralpak ZWIX(-), based on pseudo-enantiomeric selector derived from quinidine and trans-(R,R)-2-aminocyclohexanesulfonic acid with opposite configurations provided reversed enantiomer elution orders. It has further to be stressed that these separations can be obtained with mass spectrometry compatible mobile phases.
Five poly(betaine) brushes were prepared, and their resistance to blood plasma fouling was studied. Two carboxybetaines monomers were copolymerized with 2-hydroxyethyl methacrylate (HEMA) to prepare novel hydrogels. By increasing the content of the zwitterionic comonomer, a 4-fold increase in the water content could be achieved while retaining mechanical properties close to the widely used poly(HEMA) hydrogels. All hydrogels showed an unprecedentedly low fouling from blood plasma. Remarkably, by copolymerization with 10 mol % of carboxybetaine acrylamide, hydrogels fully resistant to blood plasma were prepared.
- MeSH
- Acrylamides chemical synthesis MeSH
- Betaine chemistry MeSH
- Biocompatible Materials chemistry MeSH
- Hydrogels chemical synthesis MeSH
- Plasma chemistry MeSH
- Humans MeSH
- Methacrylates chemical synthesis MeSH
- Polymerization MeSH
- Polymers chemistry MeSH
- Surface Plasmon Resonance MeSH
- Surface Properties MeSH
- Spectroscopy, Fourier Transform Infrared MeSH
- Water chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Among the class of zwitterionic polymers poly(carboxybetaine)s (poly(CB)s) are unique, emerging as the only ultra-low fouling materials known allowing the preparation of biosensors, fouling resistant nanoparticles, and non-adhesive surfaces for bacteria. Poly(carboxybetaine methacrylate) and poly(carboxybetaine acrylamide) have been prepared via atom transfer radical polymerization (ATRP), however a polymerization with living characteristics has not been achieved yet. Herein, the first successful living/controlled reversible addition fragmentation transfer (RAFT) polymerization of (3-methacryloylamino-propyl)-(2-carboxy-ethyl)-dimethyl-ammonium (carboxybetaine methacrylamide) (CBMAA-3) in acetate buffer (pH 5.2) at 70 and 37 °C is reported. The polymerization afforded very high molecular weight polymers (determined by absolute size exclusion chromatography, close to 250,000 g·mol(-1) in less than 6 h) with low PDI (<1.3) at 70 °C. The polymerization was additionally carried out at 37 °C allowing to achieve yet lower PDIs (1.06 ≤ PDI ≤ 1.15) even at 90% conversion, demonstrating the suitability of the polymerization conditions for bioconjugate grafting. The living character of the polymerization is additionally evidenced by chain extending poly(CBMAA-3) at 70 and 37 °C. Block copolymerization from biologically relevant poly[N-(2-hydroxypropyl)methacrylamide] macroCTAs was additionally performed.