Fine-Tuned Functionalizable Terpolymer Brush Nanocoating Resists Protein Adsorption and Bacterial Adhesion while Promoting Macrophage Activity and Osteoblast Proliferation

. 2025 Dec 03 ; 17 (48) : 65399-65410. [epub] 20251120

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41266300

Developing multifunctional biomaterial surfaces that resist biofouling while supporting cellular activity remains a significant challenge in biomedical engineering. We present a finely tuned functionalizable terpolymer brush nanocoating composed of zwitterionic carboxybetaine methacrylamide (CBMAA), sulfobetaine methacrylamide (SBMAA) and nonionic N-(2-hydroxypropyl) methacrylamide (HPMAA) with balanced antifouling cytocompatible characteristics through optimized surface hydration and charge. We analyzed chemical composition, thickness, ζ-potential, and wettability using X-ray photoelectron spectroscopy, infrared spectroscopy, spectroscopic ellipsometry, electrokinetic analysis, and water contact angle measurements. Systematic monomer ratio tuning identified poly(CBMAA 20 mol %-co-HPMAA 77 mol %-co-SBMAA 3 mol %) as the optimal composition, reducing protein adsorption by 98% in serum-rich media and suppressing Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion by 99%, effectively preventing biofilm formation under both static and flow conditions. Furthermore, macrophages exhibit enhanced mobility on terpolymer coatings due to their high hydration and low protein adsorption, underpinning reduced adverse immune response. Postfunctionalization with Gly-Arg-Asp (RGD) peptides enabled the adhesion of osteoblast-like SaOS-2 cells while maintaining antifouling efficacy. The tunable multifunctionality of terpolymer brushes in resisting fouling, promoting macrophage phagocytic activity, and supporting SaOS-2 cell adhesion makes them suitable for both antifouling applications and medical implants requiring host tissue integration.

Zobrazit více v PubMed

Jiang C., Wang G., Hein R., Liu N., Luo X., Davis J. J.. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem. Rev. 2020;120(8):3852–3889. doi: 10.1021/acs.chemrev.9b00739. PubMed DOI

Kalasin S., Santore M. M.. Non-specific adhesion on biomaterial surfaces driven by small amounts of protein adsorption. Colloids Surf. B Biointerfaces. 2009;73(2):229–236. doi: 10.1016/j.colsurfb.2009.05.028. PubMed DOI

Kim J.. Systematic approach to characterize the dynamics of protein adsorption on the surface of biomaterials using proteomics. Colloids Surf. B Biointerfaces. 2020;188:110756. doi: 10.1016/j.colsurfb.2019.110756. PubMed DOI

Visalakshan R. M., MacGregor M. N., Sasidharan S., Ghazaryan A., Mierczynska-Vasilev A. M., Morsbach S., Mailänder V., Landfester K., Hayball J. D., Vasilev K.. Biomaterial Surface Hydrophobicity-Mediated Serum Protein Adsorption and Immune Responses. Acs Appl. Mater. Inter. 2019;11(31):27615–27623. doi: 10.1021/acsami.9b09900. PubMed DOI

Zhou G., Groth T.. Host Responses to Biomaterials and Anti-Inflammatory Designa Brief Review. Macromol. Biosci. 2018;18(8):1800112. doi: 10.1002/mabi.201800112. PubMed DOI

Hu W.-J., Eaton J. W., Ugarova T. P., Tang L.. Molecular basis of biomaterial-mediated foreign body reactions. Blood. 2001;98(4):1231–1238. doi: 10.1182/blood.V98.4.1231. PubMed DOI

Campoccia D., Montanaro L., Arciola C. R.. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials. 2013;34(33):8018–8029. doi: 10.1016/j.biomaterials.2013.07.048. PubMed DOI

Ljungh Å., Moran A. P., Wadström T.. Interactions of bacterial adhesins with extracellular matrix and plasma proteins: pathogenic implications and therapeutic possibilities. FEMS Immunol. Med. Microbiol. 1996;16(2):117–126. doi: 10.1016/S0928-8244(96)00073-9. PubMed DOI

Veerachamy S., Yarlagadda T., Manivasagam G., Yarlagadda P. K. D. V.. Bacterial adherence and biofilm formation on medical implants: A review. Proc. Inst. Mech. Eng., Part H. 2014;228(10):1083–1099. doi: 10.1177/0954411914556137. PubMed DOI

Kumar A., Alam A., Rani M., Ehtesham N. Z., Hasnain S. E.. Biofilms: Survival and defense strategy for pathogens. Int. J. Med. Microbiol. 2017;307(8):481–489. doi: 10.1016/j.ijmm.2017.09.016. PubMed DOI

Wilkoff B. L., Boriani G., Mittal S., Poole J. E., Kennergren C., Corey G. R., Love J. C., Augostini R., Faerestrand S., Wiggins S. S.. et al. Impact of Cardiac Implantable Electronic Device Infection. Circulation: Arrhythmia Electrophysiol. 2020;13(5):e008280. doi: 10.1161/CIRCEP.119.008280. PubMed DOI PMC

Park K. R., Bryers J. D.. Effect of macrophage classical (M1) activation on implant-adherent macrophage interactions with Staphylococcus epidermidis: A murine in vitro model system. J. Biomed. Mater. Res., Part A. 2012;100A(8):2045–2053. doi: 10.1002/jbm.a.34087. PubMed DOI PMC

Saldarriaga Fernández I. C., Da Silva Domingues J. F., van Kooten T. G., Metzger S., Grainger D. W., Busscher H. J., van der Mei H. C.. Macrophage response to staphylococcal biofilms on crosslinked poly­(ethylene) glycol polymer coatings and common biomaterials in vitro. Eur. Cell Mater. 2011;21:73–79. doi: 10.22203/eCM.v021a06. PubMed DOI

Martin K. E., García A. J.. Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater. 2021;133:4–16. doi: 10.1016/j.actbio.2021.03.038. PubMed DOI PMC

Ogle M. E., Segar C. E., Sridhar S., Botchwey E. A.. Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Exp. Biol. Med. 2016;241(10):1084–1097. doi: 10.1177/1535370216650293. PubMed DOI PMC

Wynn T. A., Vannella K. M.. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016;44(3):450–462. doi: 10.1016/j.immuni.2016.02.015. PubMed DOI PMC

Subbiahdoss G., Saldarriaga Fernández I. C., da Silva Domingues J. F., Kuijer R., van der Mei H. C., Busscher H. J.. In Vitro Interactions between Bacteria, Osteoblast-Like Cells and Macrophages in the Pathogenesis of Biomaterial-Associated Infections. PLoS One. 2011;6(9):e24827. doi: 10.1371/journal.pone.0024827. PubMed DOI PMC

Arciola C. R., Campoccia D., Montanaro L.. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018;16(7):397–409. doi: 10.1038/s41579-018-0019-y. PubMed DOI

Anderson J. M., Rodriguez A., Chang D. T.. Foreign body reaction to biomaterials. Semin. Immunol. 2008;20(2):86–100. doi: 10.1016/j.smim.2007.11.004. PubMed DOI PMC

Anselme K.. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–681. doi: 10.1016/S0142-9612(99)00242-2. PubMed DOI

Abdallah M.-N., Tran S. D., Abughanam G., Laurenti M., Zuanazzi D., Mezour M. A., Xiao Y., Cerruti M., Siqueira W. L., Tamimi F.. Biomaterial surface proteomic signature determines interaction with epithelial cells. Acta Biomater. 2017;54:150–163. doi: 10.1016/j.actbio.2017.02.044. PubMed DOI

Nasrollahi S., Banerjee S., Qayum B., Banerjee P., Pathak A.. Nanoscale Matrix Topography Influences Microscale Cell Motility through Adhesions, Actin Organization, and Cell Shape. ACS Biomater. Sci. Eng. 2017;3(11):2980–2986. doi: 10.1021/acsbiomaterials.6b00554. PubMed DOI

Oliveira S. M., Alves N. M., Mano J. F.. Cell interactions with superhydrophilic and superhydrophobic surfaces. J. Adhes. Sci. Technol. 2014;28(8–9):843–863. doi: 10.1080/01694243.2012.697776. DOI

Shao Q., Jiang S.. Influence of Charged Groups on the Properties of Zwitterionic Moieties: A Molecular Simulation Study. J. Phys. Chem. B. 2014;118(27):7630–7637. doi: 10.1021/jp5027114. PubMed DOI

Lowe S., O’Brien-Simpson N. M., Connal L. A.. Antibiofouling polymer interfaces: poly­(ethylene glycol) and other promising candidates. Polym. Chem. 2015;6(2):198–212. doi: 10.1039/C4PY01356E. DOI

He M., Gao K., Zhou L., Jiao Z., Wu M., Cao J., You X., Cai Z., Su Y., Jiang Z.. Zwitterionic materials for antifouling membrane surface construction. Acta Biomater. 2016;40:142–152. doi: 10.1016/j.actbio.2016.03.038. PubMed DOI

Wang H., Christiansen D. E., Mehraeen S., Cheng G.. Winning the fight against biofilms: the first six-month study showing no biofilm formation on zwitterionic polyurethanes. Chem. Sci. 2020;11(18):4709–4721. doi: 10.1039/C9SC06155J. PubMed DOI PMC

Leng C., Huang H., Zhang K., Hung H.-C., Xu Y., Li Y., Jiang S., Chen Z.. Effect of Surface Hydration on Antifouling Properties of Mixed Charged Polymers. Langmuir. 2018;34(22):6538–6545. doi: 10.1021/acs.langmuir.8b00768. PubMed DOI

Xu X., Huang X., Chang Y., Yu Y., Zhao J., Isahak N., Teng J., Qiao R., Peng H., Zhao C.-X.. et al. Antifouling Surfaces Enabled by Surface Grafting of Highly Hydrophilic Sulfoxide Polymer Brushes. Biomacromolecules. 2021;22(2):330–339. doi: 10.1021/acs.biomac.0c01193. PubMed DOI

Surman F., Riedel T., Bruns M., Kostina N. Y., Sedláková Z., Rodriguez-Emmenegger C.. Polymer Brushes Interfacing Blood as a Route Toward High Performance Blood Contacting Devices. Macromol. Biosci. 2015;15(5):636–646. doi: 10.1002/mabi.201400470. PubMed DOI

Pérez M. B., Resendiz-Lara D. A., Matsushita Y., Kakinoki S., Iwasaki Y., Hempenius M. A., de Beer S., Wurm F. R.. Creating Anti-Biofouling Surfaces by Degradable Main-chain Polyphosphoester Polymer Brushes. Adv. Funct. Mater. 2024;34(32):2316201. doi: 10.1002/adfm.202316201. DOI

Buzzacchera I., Vorobii M., Kostina N. Y., de los Santos Pereira A., Riedel T., Bruns M., Ogieglo W., Möller M., Wilson C. J., Rodriguez-Emmenegger C.. Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings. Biomacromolecules. 2017;18(6):1983–1992. doi: 10.1021/acs.biomac.7b00516. PubMed DOI

Erathodiyil N., Chan H.-M., Wu H., Ying J. Y.. Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices. Mater. Today. 2020;38:84–98. doi: 10.1016/j.mattod.2020.03.024. DOI

Keum H., Kim J. Y., Yu B., Yu S. J., Kim J., Jeon H., Lee D. Y., Im S. G., Jon S.. Prevention of Bacterial Colonization on Catheters by a One-Step Coating Process Involving an Antibiofouling Polymer in Water. ACS Appl. Mater. Interfaces. 2017;9(23):19736–19745. doi: 10.1021/acsami.7b06899. PubMed DOI

Buxadera-Palomero J., Canal C., Torrent-Camarero S., Garrido B., Javier Gil F., Rodríguez D.. Antifouling coatings for dental implants: Polyethylene glycol-like coatings on titanium by plasma polymerization. Biointerphases. 2015;10(2):029505. doi: 10.1116/1.4913376. PubMed DOI

Cheng W., Yang C., Ding X., Engler A. C., Hedrick J. L., Yang Y. Y.. Broad-Spectrum Antimicrobial/Antifouling Soft Material Coatings Using Poly­(ethylenimine) as a Tailorable Scaffold. Biomacromolecules. 2015;16(7):1967–1977. doi: 10.1021/acs.biomac.5b00359. PubMed DOI

Ouni O. A., Subbiahdoss G., Scheberl A., Reimhult E.. DNA polyelectrolyte multilayer coatings are antifouling and promote mammalian cell adhesion. Materials. 2021;14(16):4596. doi: 10.3390/ma14164596. PubMed DOI PMC

Liu G., Li K., Wang H., Ma L., Yu L., Nie Y.. Stable Fabrication of Zwitterionic Coating Based on Copper-Phenolic Networks on Contact Lens with Improved Surface Wettability and Broad-Spectrum Antimicrobial Activity. ACS Appl. Mater. Interfaces. 2020;12(14):16125–16136. doi: 10.1021/acsami.0c02143. PubMed DOI

Gao Q., Yu M., Su Y., Xie M., Zhao X., Li P., Ma P. X.. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. Acta Biomater. 2017;51:112–124. doi: 10.1016/j.actbio.2017.01.061. PubMed DOI

Chen Q., Zhang D., Gu J., Zhang H., Wu X., Cao C., Zhang X., Liu R.. The impact of antifouling layers in fabricating bioactive surfaces. Acta Biomater. 2021;126:45–62. doi: 10.1016/j.actbio.2021.03.022. PubMed DOI

Teixeira S. P. B., Domingues R. M. A., Shevchuk M., Gomes M. E., Peppas N. A., Reis R. L.. Biomaterials for Sequestration of Growth Factors and Modulation of Cell Behavior. Adv. Funct. Mater. 2020;30(44):1909011. doi: 10.1002/adfm.201909011. DOI

Poręba R., de los Santos Pereira A., Pola R., Jiang S., Pop-Georgievski O., Sedláková Z., Schönherr H.. “Clickable” and antifouling block copolymer brushes as a versatile platform for peptide-specific cell attachment. Macromol. Biosci. 2020;20(4):1900354. doi: 10.1002/mabi.201900354. PubMed DOI

Ippel B. D., Arts B., Keizer H. M., Dankers P. Y. W.. Combinatorial functionalization with bisurea-peptides and antifouling bisurea additives of a supramolecular elastomeric biomaterial. J. Polym. Sci. B Polym. Phys. 2019;57(24):1725–1735. doi: 10.1002/polb.24907. PubMed DOI PMC

Muszanska A. K., Rochford E. T. J., Gruszka A., Bastian A. A., Busscher H. J., Norde W., van der Mei H. C., Herrmann A.. Antiadhesive Polymer Brush Coating Functionalized with Antimicrobial and RGD Peptides to Reduce Biofilm Formation and Enhance Tissue Integration. Biomacromolecules. 2014;15(6):2019–2026. doi: 10.1021/bm500168s. PubMed DOI

Vrabcová M., Houska M., Spasovová M., Forinová M., Pilipenco A., Matoušová Víšová I., Mrkvová K., Vaisocherová-Lísalová H.. Effects of storage on stability and performance of carboxybetaine-based polymer brushes. Proc.SPIE. 2024;12999:3. doi: 10.1117/12.3017613. DOI

Forinová M., Pilipenco A., Víšová I., Lynn N. S., Dostálek J., Mašková H., Hönig V., Palus M., Selinger M., Kočová P.. et al. Functionalized terpolymer-brush-based biointerface with improved antifouling properties for ultra-sensitive direct detection of virus in crude clinical samples. ACS Appl. Mater. Interfaces. 2021;13:60612. doi: 10.1021/acsami.1c16930. PubMed DOI

Pilipenco A., Forinová M., Mašková H., Honig V., Palus M., Lynn Jr N. S., Víšová I., Vrabcová M., Houska M., Anthi J.. et al. Negligible risk of surface transmission of SARS-CoV-2 in public transportation. J. Travel Med. 2023;30:taad065. doi: 10.1093/jtm/taad065. PubMed DOI PMC

Forinová M., Pilipenco A., Lynn N. S., Obořilová R., Šimečková H., Vrabcová M., Spasovová M., Jack R., Horák P., Houska M.. et al. A reusable QCM biosensor with stable antifouling nano-coating for on-site reagent-free rapid detection of E. coli O157:H7 in food products. Food Control. 2024;165:110695. doi: 10.1016/j.foodcont.2024.110695. DOI

Forinová M., Seidlová A., Pilipenco A., Lynn N. J. r., Oborilová R., Farka Z., Skládal P., Saláková A., Spasovová M., Houska M.. et al. A comparative assessment of a piezoelectric biosensor based on a new antifouling nanolayer and cultivation methods: Enhancing detection in fresh dairy products. Curr. Res. Biotechnol. 2023;6:100166. doi: 10.1016/j.crbiot.2023.100166. DOI

Víšová I., Smolková B., Uzhytchak M., Vrabcová M., Zhigunova Y., Houska M., Surman F., de los Santos Pereira A., Lunov O., Dejneka A.. et al. Modulation of Living Cell Behavior with Ultra-Low Fouling Polymer Brush Interfaces. Macromol. Biosci. 2020;20(3):1900351. doi: 10.1002/mabi.201900351. PubMed DOI

Jeong W., Kang H., Kim E., Jeong J., Hong D.. Surface-Initiated ARGET ATRP of Antifouling Zwitterionic Brushes Using Versatile and Uniform Initiator Film. Langmuir. 2019;35(41):13268–13274. doi: 10.1021/acs.langmuir.9b02219. PubMed DOI

Khodadadi Yazdi M., Zarrintaj P., Saeb M. R., Mozafari M., Bencherif S. A.. Progress in ATRP-derived materials for biomedical applications. Prog. Mater. Sci. 2024;143:101248. doi: 10.1016/j.pmatsci.2024.101248. DOI

Kuzmyn A. R., Nguyen A. T., Teunissen L. W., Zuilhof H., Baggerman J.. Antifouling Polymer Brushes via Oxygen-Tolerant Surface-Initiated PET-RAFT. Langmuir. 2020;36(16):4439–4446. doi: 10.1021/acs.langmuir.9b03536. PubMed DOI PMC

Kuzmyn A. R., de Beer S.. Polymer brushes by SI-PET-RAFT: Synthesis and applications. Polymer. 2025;323:128155. doi: 10.1016/j.polymer.2025.128155. DOI

Vaisocherová-Lísalová H., Surman F., Víšová I., Vala M., Špringer T., Ermini M. L., Šípová H., Šedivák P., Houska M., Riedel T.. et al. Copolymer brush-based ultralow-fouling biorecognition surface platform for food safety. Anal. Chem. 2016;88(21):10533–10539. doi: 10.1021/acs.analchem.6b02617. PubMed DOI

Wang Y.-M., Kálosi A., Halahovets Y., Romanenko I., Slabý J., Homola J., Svoboda J., de los Santos Pereira A., Pop-Georgievski O.. Grafting density and antifouling properties of poly­[N-(2-hydroxypropyl) methacrylamide] brushes prepared by “grafting to” and “grafting from”. Polym. Chem. 2022;13(25):3815–3826. doi: 10.1039/D2PY00478J. DOI

Vrabcová M., Spasovová M., Cirik V., Anthi J., Pilipenco A., Houska M., Romanyuk O., Vaisocherová-Lísalová H., Scott Lynn N.. Microfluidic stack reactors for the mass synthesis of polymer brushes. Chem. Eng. J. 2025;508:160914. doi: 10.1016/j.cej.2025.160914. DOI

Covato C., Pilipenco A., Scheberl A., Reimhult E., Subbiahdoss G.. Osteoblasts win the race for the surface on DNA polyelectrolyte multilayer coatings against S. epidermidis but not against S. aureus . J. Polym. Sci. B Polym. Phys. 2025;245:114336. doi: 10.1016/j.colsurfb.2024.114336. PubMed DOI

Pilipenco A., Forinová M., Černochová Z., Kolská Z., Fekete L., Vaisocherová-Lísalová H., Houska M.. The Effective Charge of Low-Fouling Polybetaine Brushes. Langmuir. 2025;41:15307. doi: 10.1021/acs.langmuir.5c00759. PubMed DOI PMC

Brash J. L., Horbett T. A., Latour R. A., Tengvall P.. The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity. Acta Biomater. 2019;94:11–24. doi: 10.1016/j.actbio.2019.06.022. PubMed DOI PMC

Inoue Y., Ishihara K.. Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures. J. Polym. Sci. B Polym. Phys. 2010;81(1):350–357. doi: 10.1016/j.colsurfb.2010.07.030. PubMed DOI

Reimhult E., Larsson C., Kasemo B., Höök F.. Simultaneous Surface Plasmon Resonance and Quartz Crystal Microbalance with Dissipation Monitoring Measurements of Biomolecular Adsorption Events Involving Structural Transformations and Variations in Coupled Water. Anal. Chem. 2004;76(24):7211–7220. doi: 10.1021/ac0492970. PubMed DOI

Riedelová Z., de los Santos Pereira A., Svoboda J., Pop-Georgievski O., Májek P., Pečánková K., Dyčka F., Rodriguez-Emmenegger C., Riedel T.. The Relation Between Protein Adsorption and Hemocompatibility of Antifouling Polymer Brushes. Macromol. Biosci. 2022;22(11):2200247. doi: 10.1002/mabi.202200247. PubMed DOI

Cheng G., Zhang Z., Chen S., Bryers J. D., Jiang S.. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007;28(29):4192–4199. doi: 10.1016/j.biomaterials.2007.05.041. PubMed DOI PMC

Cheng L., Liu Q., Lei Y., Lin Y., Zhang A.. The synthesis and characterization of carboxybetaine functionalized polysiloxanes for the preparation of anti-fouling surfaces. RSC Adv. 2014;4(97):54372–54381. doi: 10.1039/C4RA09171J.. DOI

Liu Q., Li W., Wang H., Newby B.-m. Z., Cheng F., Liu L.. Amino Acid-Based Zwitterionic Polymer Surfaces Highly Resist Long-Term Bacterial Adhesion. Langmuir. 2016;32(31):7866–7874. doi: 10.1021/acs.langmuir.6b01329. PubMed DOI

Ishihara K., Mitera K., Inoue Y., Fukazawa K.. Effects of molecular interactions at various polymer brush surfaces on fibronectin adsorption induced cell adhesion. Colloids Surf. B Biointerfaces. 2020;194:111205. doi: 10.1016/j.colsurfb.2020.111205. PubMed DOI

da Silva Domingues J. F., Roest S., Wang Y., van der Mei H. C., Libera M., van Kooten T. G., Busscher H. J.. Macrophage phagocytic activity toward adhering staphylococci on cationic and patterned hydrogel coatings versus common biomaterials. Acta Biomater. 2015;18:1–8. doi: 10.1016/j.actbio.2015.02.028. PubMed DOI

da Silva Domingues J. F., van der Mei H. C., Busscher H. J., van Kooten T. G.. Phagocytosis of Bacteria Adhering to a Biomaterial Surface in a Surface Thermodynamic Perspective. PLoS One. 2013;8(7):e70046. doi: 10.1371/journal.pone.0070046. PubMed DOI PMC

Víšová I., Smolková B., Uzhytchak M., Vrabcová M., Chafai D. E., Houska M., Pastucha M., Skládal P., Farka Z., Dejneka A.. et al. Functionalizable antifouling coatings as tunable platforms for the stress-driven manipulation of living cell machinery. Biomolecules. 2020;10(8):1146. doi: 10.3390/biom10081146. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...