Fine-Tuned Functionalizable Terpolymer Brush Nanocoating Resists Protein Adsorption and Bacterial Adhesion while Promoting Macrophage Activity and Osteoblast Proliferation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41266300
PubMed Central
PMC12679544
DOI
10.1021/acsami.5c13698
Knihovny.cz E-zdroje
- Klíčová slova
- antifouling coatings, biomaterials, cell–surface interactions, polymer brush, surface modifications,
- MeSH
- adsorpce účinky léků MeSH
- bakteriální adheze * účinky léků MeSH
- betain chemie analogy a deriváty MeSH
- biofilmy účinky léků MeSH
- biokompatibilní potahované materiály * chemie farmakologie MeSH
- bioznečištění prevence a kontrola MeSH
- lidé MeSH
- makrofágy * účinky léků cytologie MeSH
- myši MeSH
- osteoblasty * cytologie účinky léků MeSH
- polymery * chemie farmakologie MeSH
- povrchové vlastnosti MeSH
- proliferace buněk účinky léků MeSH
- Pseudomonas aeruginosa účinky léků fyziologie MeSH
- RAW 264.7 buňky MeSH
- smáčivost MeSH
- Staphylococcus epidermidis účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- betain MeSH
- biokompatibilní potahované materiály * MeSH
- polymery * MeSH
Developing multifunctional biomaterial surfaces that resist biofouling while supporting cellular activity remains a significant challenge in biomedical engineering. We present a finely tuned functionalizable terpolymer brush nanocoating composed of zwitterionic carboxybetaine methacrylamide (CBMAA), sulfobetaine methacrylamide (SBMAA) and nonionic N-(2-hydroxypropyl) methacrylamide (HPMAA) with balanced antifouling cytocompatible characteristics through optimized surface hydration and charge. We analyzed chemical composition, thickness, ζ-potential, and wettability using X-ray photoelectron spectroscopy, infrared spectroscopy, spectroscopic ellipsometry, electrokinetic analysis, and water contact angle measurements. Systematic monomer ratio tuning identified poly(CBMAA 20 mol %-co-HPMAA 77 mol %-co-SBMAA 3 mol %) as the optimal composition, reducing protein adsorption by 98% in serum-rich media and suppressing Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion by 99%, effectively preventing biofilm formation under both static and flow conditions. Furthermore, macrophages exhibit enhanced mobility on terpolymer coatings due to their high hydration and low protein adsorption, underpinning reduced adverse immune response. Postfunctionalization with Gly-Arg-Asp (RGD) peptides enabled the adhesion of osteoblast-like SaOS-2 cells while maintaining antifouling efficacy. The tunable multifunctionality of terpolymer brushes in resisting fouling, promoting macrophage phagocytic activity, and supporting SaOS-2 cell adhesion makes them suitable for both antifouling applications and medical implants requiring host tissue integration.
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 Prague 121 16 Czech Republic
Institute of Colloid and Biointerface Science BOKU University Muthgasse 11 Vienna A 1190 Austria
Zobrazit více v PubMed
Jiang C., Wang G., Hein R., Liu N., Luo X., Davis J. J.. Antifouling Strategies for Selective In Vitro and In Vivo Sensing. Chem. Rev. 2020;120(8):3852–3889. doi: 10.1021/acs.chemrev.9b00739. PubMed DOI
Kalasin S., Santore M. M.. Non-specific adhesion on biomaterial surfaces driven by small amounts of protein adsorption. Colloids Surf. B Biointerfaces. 2009;73(2):229–236. doi: 10.1016/j.colsurfb.2009.05.028. PubMed DOI
Kim J.. Systematic approach to characterize the dynamics of protein adsorption on the surface of biomaterials using proteomics. Colloids Surf. B Biointerfaces. 2020;188:110756. doi: 10.1016/j.colsurfb.2019.110756. PubMed DOI
Visalakshan R. M., MacGregor M. N., Sasidharan S., Ghazaryan A., Mierczynska-Vasilev A. M., Morsbach S., Mailänder V., Landfester K., Hayball J. D., Vasilev K.. Biomaterial Surface Hydrophobicity-Mediated Serum Protein Adsorption and Immune Responses. Acs Appl. Mater. Inter. 2019;11(31):27615–27623. doi: 10.1021/acsami.9b09900. PubMed DOI
Zhou G., Groth T.. Host Responses to Biomaterials and Anti-Inflammatory Designa Brief Review. Macromol. Biosci. 2018;18(8):1800112. doi: 10.1002/mabi.201800112. PubMed DOI
Hu W.-J., Eaton J. W., Ugarova T. P., Tang L.. Molecular basis of biomaterial-mediated foreign body reactions. Blood. 2001;98(4):1231–1238. doi: 10.1182/blood.V98.4.1231. PubMed DOI
Campoccia D., Montanaro L., Arciola C. R.. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials. 2013;34(33):8018–8029. doi: 10.1016/j.biomaterials.2013.07.048. PubMed DOI
Ljungh Å., Moran A. P., Wadström T.. Interactions of bacterial adhesins with extracellular matrix and plasma proteins: pathogenic implications and therapeutic possibilities. FEMS Immunol. Med. Microbiol. 1996;16(2):117–126. doi: 10.1016/S0928-8244(96)00073-9. PubMed DOI
Veerachamy S., Yarlagadda T., Manivasagam G., Yarlagadda P. K. D. V.. Bacterial adherence and biofilm formation on medical implants: A review. Proc. Inst. Mech. Eng., Part H. 2014;228(10):1083–1099. doi: 10.1177/0954411914556137. PubMed DOI
Kumar A., Alam A., Rani M., Ehtesham N. Z., Hasnain S. E.. Biofilms: Survival and defense strategy for pathogens. Int. J. Med. Microbiol. 2017;307(8):481–489. doi: 10.1016/j.ijmm.2017.09.016. PubMed DOI
Wilkoff B. L., Boriani G., Mittal S., Poole J. E., Kennergren C., Corey G. R., Love J. C., Augostini R., Faerestrand S., Wiggins S. S.. et al. Impact of Cardiac Implantable Electronic Device Infection. Circulation: Arrhythmia Electrophysiol. 2020;13(5):e008280. doi: 10.1161/CIRCEP.119.008280. PubMed DOI PMC
Park K. R., Bryers J. D.. Effect of macrophage classical (M1) activation on implant-adherent macrophage interactions with Staphylococcus epidermidis: A murine in vitro model system. J. Biomed. Mater. Res., Part A. 2012;100A(8):2045–2053. doi: 10.1002/jbm.a.34087. PubMed DOI PMC
Saldarriaga Fernández I. C., Da Silva Domingues J. F., van Kooten T. G., Metzger S., Grainger D. W., Busscher H. J., van der Mei H. C.. Macrophage response to staphylococcal biofilms on crosslinked poly(ethylene) glycol polymer coatings and common biomaterials in vitro. Eur. Cell Mater. 2011;21:73–79. doi: 10.22203/eCM.v021a06. PubMed DOI
Martin K. E., García A. J.. Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater. 2021;133:4–16. doi: 10.1016/j.actbio.2021.03.038. PubMed DOI PMC
Ogle M. E., Segar C. E., Sridhar S., Botchwey E. A.. Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Exp. Biol. Med. 2016;241(10):1084–1097. doi: 10.1177/1535370216650293. PubMed DOI PMC
Wynn T. A., Vannella K. M.. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016;44(3):450–462. doi: 10.1016/j.immuni.2016.02.015. PubMed DOI PMC
Subbiahdoss G., Saldarriaga Fernández I. C., da Silva Domingues J. F., Kuijer R., van der Mei H. C., Busscher H. J.. In Vitro Interactions between Bacteria, Osteoblast-Like Cells and Macrophages in the Pathogenesis of Biomaterial-Associated Infections. PLoS One. 2011;6(9):e24827. doi: 10.1371/journal.pone.0024827. PubMed DOI PMC
Arciola C. R., Campoccia D., Montanaro L.. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018;16(7):397–409. doi: 10.1038/s41579-018-0019-y. PubMed DOI
Anderson J. M., Rodriguez A., Chang D. T.. Foreign body reaction to biomaterials. Semin. Immunol. 2008;20(2):86–100. doi: 10.1016/j.smim.2007.11.004. PubMed DOI PMC
Anselme K.. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–681. doi: 10.1016/S0142-9612(99)00242-2. PubMed DOI
Abdallah M.-N., Tran S. D., Abughanam G., Laurenti M., Zuanazzi D., Mezour M. A., Xiao Y., Cerruti M., Siqueira W. L., Tamimi F.. Biomaterial surface proteomic signature determines interaction with epithelial cells. Acta Biomater. 2017;54:150–163. doi: 10.1016/j.actbio.2017.02.044. PubMed DOI
Nasrollahi S., Banerjee S., Qayum B., Banerjee P., Pathak A.. Nanoscale Matrix Topography Influences Microscale Cell Motility through Adhesions, Actin Organization, and Cell Shape. ACS Biomater. Sci. Eng. 2017;3(11):2980–2986. doi: 10.1021/acsbiomaterials.6b00554. PubMed DOI
Oliveira S. M., Alves N. M., Mano J. F.. Cell interactions with superhydrophilic and superhydrophobic surfaces. J. Adhes. Sci. Technol. 2014;28(8–9):843–863. doi: 10.1080/01694243.2012.697776. DOI
Shao Q., Jiang S.. Influence of Charged Groups on the Properties of Zwitterionic Moieties: A Molecular Simulation Study. J. Phys. Chem. B. 2014;118(27):7630–7637. doi: 10.1021/jp5027114. PubMed DOI
Lowe S., O’Brien-Simpson N. M., Connal L. A.. Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates. Polym. Chem. 2015;6(2):198–212. doi: 10.1039/C4PY01356E. DOI
He M., Gao K., Zhou L., Jiao Z., Wu M., Cao J., You X., Cai Z., Su Y., Jiang Z.. Zwitterionic materials for antifouling membrane surface construction. Acta Biomater. 2016;40:142–152. doi: 10.1016/j.actbio.2016.03.038. PubMed DOI
Wang H., Christiansen D. E., Mehraeen S., Cheng G.. Winning the fight against biofilms: the first six-month study showing no biofilm formation on zwitterionic polyurethanes. Chem. Sci. 2020;11(18):4709–4721. doi: 10.1039/C9SC06155J. PubMed DOI PMC
Leng C., Huang H., Zhang K., Hung H.-C., Xu Y., Li Y., Jiang S., Chen Z.. Effect of Surface Hydration on Antifouling Properties of Mixed Charged Polymers. Langmuir. 2018;34(22):6538–6545. doi: 10.1021/acs.langmuir.8b00768. PubMed DOI
Xu X., Huang X., Chang Y., Yu Y., Zhao J., Isahak N., Teng J., Qiao R., Peng H., Zhao C.-X.. et al. Antifouling Surfaces Enabled by Surface Grafting of Highly Hydrophilic Sulfoxide Polymer Brushes. Biomacromolecules. 2021;22(2):330–339. doi: 10.1021/acs.biomac.0c01193. PubMed DOI
Surman F., Riedel T., Bruns M., Kostina N. Y., Sedláková Z., Rodriguez-Emmenegger C.. Polymer Brushes Interfacing Blood as a Route Toward High Performance Blood Contacting Devices. Macromol. Biosci. 2015;15(5):636–646. doi: 10.1002/mabi.201400470. PubMed DOI
Pérez M. B., Resendiz-Lara D. A., Matsushita Y., Kakinoki S., Iwasaki Y., Hempenius M. A., de Beer S., Wurm F. R.. Creating Anti-Biofouling Surfaces by Degradable Main-chain Polyphosphoester Polymer Brushes. Adv. Funct. Mater. 2024;34(32):2316201. doi: 10.1002/adfm.202316201. DOI
Buzzacchera I., Vorobii M., Kostina N. Y., de los Santos Pereira A., Riedel T., Bruns M., Ogieglo W., Möller M., Wilson C. J., Rodriguez-Emmenegger C.. Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings. Biomacromolecules. 2017;18(6):1983–1992. doi: 10.1021/acs.biomac.7b00516. PubMed DOI
Erathodiyil N., Chan H.-M., Wu H., Ying J. Y.. Zwitterionic polymers and hydrogels for antibiofouling applications in implantable devices. Mater. Today. 2020;38:84–98. doi: 10.1016/j.mattod.2020.03.024. DOI
Keum H., Kim J. Y., Yu B., Yu S. J., Kim J., Jeon H., Lee D. Y., Im S. G., Jon S.. Prevention of Bacterial Colonization on Catheters by a One-Step Coating Process Involving an Antibiofouling Polymer in Water. ACS Appl. Mater. Interfaces. 2017;9(23):19736–19745. doi: 10.1021/acsami.7b06899. PubMed DOI
Buxadera-Palomero J., Canal C., Torrent-Camarero S., Garrido B., Javier Gil F., Rodríguez D.. Antifouling coatings for dental implants: Polyethylene glycol-like coatings on titanium by plasma polymerization. Biointerphases. 2015;10(2):029505. doi: 10.1116/1.4913376. PubMed DOI
Cheng W., Yang C., Ding X., Engler A. C., Hedrick J. L., Yang Y. Y.. Broad-Spectrum Antimicrobial/Antifouling Soft Material Coatings Using Poly(ethylenimine) as a Tailorable Scaffold. Biomacromolecules. 2015;16(7):1967–1977. doi: 10.1021/acs.biomac.5b00359. PubMed DOI
Ouni O. A., Subbiahdoss G., Scheberl A., Reimhult E.. DNA polyelectrolyte multilayer coatings are antifouling and promote mammalian cell adhesion. Materials. 2021;14(16):4596. doi: 10.3390/ma14164596. PubMed DOI PMC
Liu G., Li K., Wang H., Ma L., Yu L., Nie Y.. Stable Fabrication of Zwitterionic Coating Based on Copper-Phenolic Networks on Contact Lens with Improved Surface Wettability and Broad-Spectrum Antimicrobial Activity. ACS Appl. Mater. Interfaces. 2020;12(14):16125–16136. doi: 10.1021/acsami.0c02143. PubMed DOI
Gao Q., Yu M., Su Y., Xie M., Zhao X., Li P., Ma P. X.. Rationally designed dual functional block copolymers for bottlebrush-like coatings: In vitro and in vivo antimicrobial, antibiofilm, and antifouling properties. Acta Biomater. 2017;51:112–124. doi: 10.1016/j.actbio.2017.01.061. PubMed DOI
Chen Q., Zhang D., Gu J., Zhang H., Wu X., Cao C., Zhang X., Liu R.. The impact of antifouling layers in fabricating bioactive surfaces. Acta Biomater. 2021;126:45–62. doi: 10.1016/j.actbio.2021.03.022. PubMed DOI
Teixeira S. P. B., Domingues R. M. A., Shevchuk M., Gomes M. E., Peppas N. A., Reis R. L.. Biomaterials for Sequestration of Growth Factors and Modulation of Cell Behavior. Adv. Funct. Mater. 2020;30(44):1909011. doi: 10.1002/adfm.201909011. DOI
Poręba R., de los Santos Pereira A., Pola R., Jiang S., Pop-Georgievski O., Sedláková Z., Schönherr H.. “Clickable” and antifouling block copolymer brushes as a versatile platform for peptide-specific cell attachment. Macromol. Biosci. 2020;20(4):1900354. doi: 10.1002/mabi.201900354. PubMed DOI
Ippel B. D., Arts B., Keizer H. M., Dankers P. Y. W.. Combinatorial functionalization with bisurea-peptides and antifouling bisurea additives of a supramolecular elastomeric biomaterial. J. Polym. Sci. B Polym. Phys. 2019;57(24):1725–1735. doi: 10.1002/polb.24907. PubMed DOI PMC
Muszanska A. K., Rochford E. T. J., Gruszka A., Bastian A. A., Busscher H. J., Norde W., van der Mei H. C., Herrmann A.. Antiadhesive Polymer Brush Coating Functionalized with Antimicrobial and RGD Peptides to Reduce Biofilm Formation and Enhance Tissue Integration. Biomacromolecules. 2014;15(6):2019–2026. doi: 10.1021/bm500168s. PubMed DOI
Vrabcová M., Houska M., Spasovová M., Forinová M., Pilipenco A., Matoušová Víšová I., Mrkvová K., Vaisocherová-Lísalová H.. Effects of storage on stability and performance of carboxybetaine-based polymer brushes. Proc.SPIE. 2024;12999:3. doi: 10.1117/12.3017613. DOI
Forinová M., Pilipenco A., Víšová I., Lynn N. S., Dostálek J., Mašková H., Hönig V., Palus M., Selinger M., Kočová P.. et al. Functionalized terpolymer-brush-based biointerface with improved antifouling properties for ultra-sensitive direct detection of virus in crude clinical samples. ACS Appl. Mater. Interfaces. 2021;13:60612. doi: 10.1021/acsami.1c16930. PubMed DOI
Pilipenco A., Forinová M., Mašková H., Honig V., Palus M., Lynn Jr N. S., Víšová I., Vrabcová M., Houska M., Anthi J.. et al. Negligible risk of surface transmission of SARS-CoV-2 in public transportation. J. Travel Med. 2023;30:taad065. doi: 10.1093/jtm/taad065. PubMed DOI PMC
Forinová M., Pilipenco A., Lynn N. S., Obořilová R., Šimečková H., Vrabcová M., Spasovová M., Jack R., Horák P., Houska M.. et al. A reusable QCM biosensor with stable antifouling nano-coating for on-site reagent-free rapid detection of E. coli O157:H7 in food products. Food Control. 2024;165:110695. doi: 10.1016/j.foodcont.2024.110695. DOI
Forinová M., Seidlová A., Pilipenco A., Lynn N. J. r., Oborilová R., Farka Z., Skládal P., Saláková A., Spasovová M., Houska M.. et al. A comparative assessment of a piezoelectric biosensor based on a new antifouling nanolayer and cultivation methods: Enhancing detection in fresh dairy products. Curr. Res. Biotechnol. 2023;6:100166. doi: 10.1016/j.crbiot.2023.100166. DOI
Víšová I., Smolková B., Uzhytchak M., Vrabcová M., Zhigunova Y., Houska M., Surman F., de los Santos Pereira A., Lunov O., Dejneka A.. et al. Modulation of Living Cell Behavior with Ultra-Low Fouling Polymer Brush Interfaces. Macromol. Biosci. 2020;20(3):1900351. doi: 10.1002/mabi.201900351. PubMed DOI
Jeong W., Kang H., Kim E., Jeong J., Hong D.. Surface-Initiated ARGET ATRP of Antifouling Zwitterionic Brushes Using Versatile and Uniform Initiator Film. Langmuir. 2019;35(41):13268–13274. doi: 10.1021/acs.langmuir.9b02219. PubMed DOI
Khodadadi Yazdi M., Zarrintaj P., Saeb M. R., Mozafari M., Bencherif S. A.. Progress in ATRP-derived materials for biomedical applications. Prog. Mater. Sci. 2024;143:101248. doi: 10.1016/j.pmatsci.2024.101248. DOI
Kuzmyn A. R., Nguyen A. T., Teunissen L. W., Zuilhof H., Baggerman J.. Antifouling Polymer Brushes via Oxygen-Tolerant Surface-Initiated PET-RAFT. Langmuir. 2020;36(16):4439–4446. doi: 10.1021/acs.langmuir.9b03536. PubMed DOI PMC
Kuzmyn A. R., de Beer S.. Polymer brushes by SI-PET-RAFT: Synthesis and applications. Polymer. 2025;323:128155. doi: 10.1016/j.polymer.2025.128155. DOI
Vaisocherová-Lísalová H., Surman F., Víšová I., Vala M., Špringer T., Ermini M. L., Šípová H., Šedivák P., Houska M., Riedel T.. et al. Copolymer brush-based ultralow-fouling biorecognition surface platform for food safety. Anal. Chem. 2016;88(21):10533–10539. doi: 10.1021/acs.analchem.6b02617. PubMed DOI
Wang Y.-M., Kálosi A., Halahovets Y., Romanenko I., Slabý J., Homola J., Svoboda J., de los Santos Pereira A., Pop-Georgievski O.. Grafting density and antifouling properties of poly[N-(2-hydroxypropyl) methacrylamide] brushes prepared by “grafting to” and “grafting from”. Polym. Chem. 2022;13(25):3815–3826. doi: 10.1039/D2PY00478J. DOI
Vrabcová M., Spasovová M., Cirik V., Anthi J., Pilipenco A., Houska M., Romanyuk O., Vaisocherová-Lísalová H., Scott Lynn N.. Microfluidic stack reactors for the mass synthesis of polymer brushes. Chem. Eng. J. 2025;508:160914. doi: 10.1016/j.cej.2025.160914. DOI
Covato C., Pilipenco A., Scheberl A., Reimhult E., Subbiahdoss G.. Osteoblasts win the race for the surface on DNA polyelectrolyte multilayer coatings against S. epidermidis but not against S. aureus . J. Polym. Sci. B Polym. Phys. 2025;245:114336. doi: 10.1016/j.colsurfb.2024.114336. PubMed DOI
Pilipenco A., Forinová M., Černochová Z., Kolská Z., Fekete L., Vaisocherová-Lísalová H., Houska M.. The Effective Charge of Low-Fouling Polybetaine Brushes. Langmuir. 2025;41:15307. doi: 10.1021/acs.langmuir.5c00759. PubMed DOI PMC
Brash J. L., Horbett T. A., Latour R. A., Tengvall P.. The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity. Acta Biomater. 2019;94:11–24. doi: 10.1016/j.actbio.2019.06.022. PubMed DOI PMC
Inoue Y., Ishihara K.. Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures. J. Polym. Sci. B Polym. Phys. 2010;81(1):350–357. doi: 10.1016/j.colsurfb.2010.07.030. PubMed DOI
Reimhult E., Larsson C., Kasemo B., Höök F.. Simultaneous Surface Plasmon Resonance and Quartz Crystal Microbalance with Dissipation Monitoring Measurements of Biomolecular Adsorption Events Involving Structural Transformations and Variations in Coupled Water. Anal. Chem. 2004;76(24):7211–7220. doi: 10.1021/ac0492970. PubMed DOI
Riedelová Z., de los Santos Pereira A., Svoboda J., Pop-Georgievski O., Májek P., Pečánková K., Dyčka F., Rodriguez-Emmenegger C., Riedel T.. The Relation Between Protein Adsorption and Hemocompatibility of Antifouling Polymer Brushes. Macromol. Biosci. 2022;22(11):2200247. doi: 10.1002/mabi.202200247. PubMed DOI
Cheng G., Zhang Z., Chen S., Bryers J. D., Jiang S.. Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials. 2007;28(29):4192–4199. doi: 10.1016/j.biomaterials.2007.05.041. PubMed DOI PMC
Cheng L., Liu Q., Lei Y., Lin Y., Zhang A.. The synthesis and characterization of carboxybetaine functionalized polysiloxanes for the preparation of anti-fouling surfaces. RSC Adv. 2014;4(97):54372–54381. doi: 10.1039/C4RA09171J.. DOI
Liu Q., Li W., Wang H., Newby B.-m. Z., Cheng F., Liu L.. Amino Acid-Based Zwitterionic Polymer Surfaces Highly Resist Long-Term Bacterial Adhesion. Langmuir. 2016;32(31):7866–7874. doi: 10.1021/acs.langmuir.6b01329. PubMed DOI
Ishihara K., Mitera K., Inoue Y., Fukazawa K.. Effects of molecular interactions at various polymer brush surfaces on fibronectin adsorption induced cell adhesion. Colloids Surf. B Biointerfaces. 2020;194:111205. doi: 10.1016/j.colsurfb.2020.111205. PubMed DOI
da Silva Domingues J. F., Roest S., Wang Y., van der Mei H. C., Libera M., van Kooten T. G., Busscher H. J.. Macrophage phagocytic activity toward adhering staphylococci on cationic and patterned hydrogel coatings versus common biomaterials. Acta Biomater. 2015;18:1–8. doi: 10.1016/j.actbio.2015.02.028. PubMed DOI
da Silva Domingues J. F., van der Mei H. C., Busscher H. J., van Kooten T. G.. Phagocytosis of Bacteria Adhering to a Biomaterial Surface in a Surface Thermodynamic Perspective. PLoS One. 2013;8(7):e70046. doi: 10.1371/journal.pone.0070046. PubMed DOI PMC
Víšová I., Smolková B., Uzhytchak M., Vrabcová M., Chafai D. E., Houska M., Pastucha M., Skládal P., Farka Z., Dejneka A.. et al. Functionalizable antifouling coatings as tunable platforms for the stress-driven manipulation of living cell machinery. Biomolecules. 2020;10(8):1146. doi: 10.3390/biom10081146. PubMed DOI PMC