Negligible risk of surface transmission of SARS-CoV-2 in public transportation

. 2023 Sep 05 ; 30 (5) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37133444

Grantová podpora
Praemium Lumina Quaeruntur
LQ100101902 Czech Academy of Sciences
# 21-19779S Czech Science Foundation
CZ.01.1.02/0.0/0.0/20_321/0024852 BIOSIP
HVL
CZ.02.1.01/0.0/0.0/15_003/0000447 ELIBIO
European Regional Development Fund

BACKGROUND: Exposure to pathogens in public transport systems is a common means of spreading infection, mainly by inhaling aerosol or droplets from infected individuals. Such particles also contaminate surfaces, creating a potential surface-transmission pathway. METHODS: A fast acoustic biosensor with an antifouling nano-coating was introduced to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on exposed surfaces in the Prague Public Transport System. Samples were measured directly without pre-treatment. Results with the sensor gave excellent agreement with parallel quantitative reverse-transcription polymerase chain reaction (qRT-PCR) measurements on 482 surface samples taken from actively used trams, buses, metro trains and platforms between 7 and 9 April 2021, in the middle of the lineage Alpha SARS-CoV-2 epidemic wave when 1 in 240 people were COVID-19 positive in Prague. RESULTS: Only ten of the 482 surface swabs produced positive results and none of them contained virus particles capable of replication, indicating that positive samples contained inactive virus particles and/or fragments. Measurements of the rate of decay of SARS-CoV-2 on frequently touched surface materials showed that the virus did not remain viable longer than 1-4 h. The rate of inactivation was the fastest on rubber handrails in metro escalators and the slowest on hard-plastic seats, window glasses and stainless-steel grab rails. As a result of this study, Prague Public Transport Systems revised their cleaning protocols and the lengths of parking times during the pandemic. CONCLUSIONS: Our findings suggest that surface transmission played no or negligible role in spreading SARS-CoV-2 in Prague. The results also demonstrate the potential of the new biosensor to serve as a complementary screening tool in epidemic monitoring and prognosis.

Zobrazit více v PubMed

Afshinnekoo  E, Meydan  C, Chowdhury  S  et al.  Geospatial resolution of human and bacterial diversity with city-scale metagenomics. Cell Syst  2015; 1:72–87. 10.1016/j.cels.2015.01.001. PubMed DOI PMC

Wölfel  R, Corman  VM, Guggemos  W  et al.  Virological assessment of hospitalized patients with COVID-2019. Nature  2020; 581:465–9. 10.1038/s41586-020-2196-x. PubMed DOI

Dhama  K, Khan  S, Tiwari  R  et al.  Coronavirus disease 2019 - COVID-19. Clin Microbiol Rev  2020; 33:e00028–0. 10.1128/CMR.00028-20. PubMed DOI PMC

Klompas  M, Baker  MA, Rhee  C. Airborne transmission of SARS-CoV-2: theoretical considerations and available evidence. JAMA  2020; 324:441–2. 10.1001/jama.2020.12458. PubMed DOI

Hickey  JLS, Reist  PC. Health significance of airborne microorganisms from wastewater treatment processes part II: health significance and alternatives for action. J Water Pollut Control  1975; 47:2758–73. PubMed

van  Doremalen  N, Bushmaker  T, Morris  DH  et al.  Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med  2020; 382:1564–7. 10.1056/NEJMc2004973. PubMed DOI PMC

Zhao  Y, Richardson  B, Takle  E  et al.  Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States. Sci Rep  2019; 9:11755. 10.1038/s41598-019-47788-z. PubMed DOI PMC

Zhao  B, Dewald  C, Hennig  M  et al.  Microorganisms @ materials surfaces in aircraft: potential risks for public health? – a systematic review. Travel Med Infect Dis  2019; 28:6–14. 10.1016/j.tmaid.2018.07.011. PubMed DOI

Feske  ML, Teeter  LD, Musser  JM, Graviss  EA. Giving TB wheels: public transportation as a risk factor for tuberculosis transmission. Tuberculosis  2011; 91:S16–23. 10.1016/j.tube.2011.10.005. PubMed DOI

Andrews  JR, Morrow  C, Wood  R. Modeling the role of public transportation in sustaining tuberculosis transmission in South Africa. Am J Epidemiol  2013; 177:556–61. 10.1093/aje/kws331. PubMed DOI PMC

Mangili  A, Gendreau  MA. Transmission of infectious diseases during commercial air travel. Lancet  2005; 365:989–96. 10.1016/S0140-6736(05)71089-8. PubMed DOI PMC

Tang  JW, Wilson  P, Shetty  N, Noakes  CJ. Aerosol-transmitted infections-a new consideration for public health and infection control teams. Curr Treat Options Infect Dis  2015; 7:176–201. 10.1007/s40506-015-0057-1. PubMed DOI PMC

Abrahão  JS, Sacchetto  L, Rezende  IM  et al.  Detection of SARS-CoV-2 RNA on public surfaces in a densely populated urban area of Brazil: a potential tool for monitoring the circulation of infected patients. Sci Total Environ  2021; 766:142645. 10.1016/j.scitotenv.2020.142645. PubMed DOI PMC

Moriarty  LF, Marston  BJ, et al.  Public health responses to COVID-19 outbreaks on cruise ships — worldwide, February–March 2020. In: Wkly MMM, 2020:347–52. 10.15585/mmwr.mm6912e3. PubMed DOI PMC

Moreno  T, Pintó  RM, Bosch  A  et al.  Tracing surface and airborne SARS-CoV-2 RNA inside public buses and Subway trains. Environ Int  2021; 147:106326. 10.1016/j.envint.2020.106326. PubMed DOI PMC

Baker  RE, Mahmud  AS, Wagner  CE  et al.  Epidemic dynamics of respiratory syncytial virus in current and future climates. Nat Commun  2019; 10:5512. 10.1038/s41467-019-13562-y. PubMed DOI PMC

Chu  DK, Akl  EA, Duda  S  et al.  Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet  2020; 395:1973–87. 10.1016/S0140-6736(20)31142-9. PubMed DOI PMC

Yan  EL, Yam.  Climate change and the origin of SARS-CoV-2. J Travel Med  2020; 27:taaa224. 10.1093/jtm/taaa224. PubMed DOI PMC

Vandenberg  O, Martiny  D, Rochas  O, van Belkum  A, Kozlakidis  Z. Considerations for diagnostic COVID-19 tests. Nat Rev Microbiol  2021; 19:171–83. 10.1038/s41579-020-00461-z. PubMed DOI PMC

Iglói  Z, leven  M, Abdel-Karem Abou-Nouar  Z  et al.  Comparison of commercial realtime reverse transcription PCR assays for the detection of SARS-CoV-2. J Clin Virol  2020; 129:104510. 10.1016/j.jcv.2020.104510. PubMed DOI PMC

Basso  D, Aita  A, Navaglia  F  et al.  SARS-CoV-2 RNA identification in nasopharyngeal swabs: issues in pre-analytics. Clin Chem Lab Med  2020; 58:1579–86. 10.1515/cclm-2020-0749. PubMed DOI

Xie  X, Zhong  Z, Zhao  W  et al.  Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: relationship to negative RT-PCR testing. Radiology  2020; 296:E41–5. 10.1148/radiol.2020200343. PubMed DOI PMC

Bullard  J, Dust  K, Funk  D  et al.  Predicting infectious severe acute respiratory syndrome coronavirus 2 from diagnostic samples. Clin Infect Dis  2020; 71:2663–6. 10.1093/cid/ciaa638. PubMed DOI PMC

Hong  K, Cao  W, Liu  Z  et al.  Prolonged presence of viral nucleic acid in clinically recovered COVID-19 patients was not associated with effective infectiousness. Emerg Microbes Infect  2020; 9:2315–21. 10.1080/22221751.2020.1827983. PubMed DOI PMC

He  L, Chen  T, Labuza  TP. Recovery and quantitative detection of Thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy. Food Chem  2014; 148:42–6. 10.1016/j.foodchem.2013.10.023. PubMed DOI

Alamer  S, Eissa  S, Chinnappan  R  et al.  Rapid colorimetric Lactoferrin-based sandwich immunoassay on cotton swabs for the detection of foodborne pathogenic bacteria. Talanta  2018; 185:275–80. 10.1016/j.talanta.2018.03.072. PubMed DOI

Ashley  J, Piekarska  M, Segers  C  et al.  An SPR based sensor for allergens detection. Biosens Bioelectron  2017; 88:109–13. 10.1016/j.bios.2016.07.101. PubMed DOI

Forinova  M, Pilipenco  A, Visova  I  et al.  Biosensor for rapid detection of SARS-CoV-2 in real-world samples. IEEE Sensor  2021; 1–4. 10.1109/Sensors47087.2021.9639783. DOI

Wang  R, Li  Y. Hydrogel based QCM Aptasensor for detection of avian Influenzavirus. Biosens Bioelectron  2013; 42:148–55. 10.1016/j.bios.2012.10.038. PubMed DOI

Wachiralurpan  S, Phung-On  I, Chanlek  N  et al.  In-situ monitoring of real-time loop-mediated isothermal amplification with QCM: detecting listeria monocytogenes. Biosensors  2021; 11:308. 10.3390/bios11090308. PubMed DOI PMC

Komenda M, Karolyi M, Bulhart V, Žofka J, Brauner T, Hak J, et al.  Onemocnění Aktuálně. COVID-19: overview of the current situation for the capital city of Prague. Ministry of Health of The Czech Republic. 2022. https://onemocneni-aktualne.mzcr.cz/covid-19.

World Health Organization . Diagnostic testing for SARS-CoV-2: interim guidance, 11 September 2020. World Health Organization, 2020. https://apps.who.int/iris/handle/10665/334254.

Shu  Y, McCauley  J. GISAID: global initiative on sharing all influenza data – from vision to reality. Eurosurveillance  2017; 22:30494. 10.2807/1560-7917.ES.2017.22.13.30494. PubMed DOI PMC

Ai O'Toole  E, Scher  E, Underwood  A  et al.  Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol  2021; 7:veab064. 10.1093/ve/veab064. PubMed DOI PMC

Forinová  M, Pilipenco  A, Víšová  I  et al.  Functionalized terpolymer-brush-based biointerface with improved antifouling properties for ultra-sensitive direct detection of virus in crude clinical samples. ACS Appl Mater Interfaces  2021; 33:60612–624. 10.1021/acsami.1c16930. PubMed DOI

Dopravní podnik hl. m. Prahy. Prague Transportation Yearbook 2021. Prague: Technická správa komunikacíhl. m. Prahy (TSK), 2021. https://www.tsk-praha.cz/static/udi-rocenka-2021-cz.pdf.

Hoffman  JS, Hirano  M, Panpradist  N  et al.  Passively sensing SARS-CoV-2 RNA in public transit buses. Sci Total Environ  2022; 821:152790. 10.1016/j.scitotenv.2021.152790. PubMed DOI PMC

Kotwa  JD, Jamal  AJ, Mbareche  H  et al.  Surface and air contamination with severe acute respiratory syndrome coronavirus 2 from hospitalized coronavirus disease 2019 patients in Toronto, Canada, March–May 2020. J Infect Dis  2022; 225:768–76. 10.1093/infdis/jiab578. PubMed DOI PMC

Guadalupe  JJ, Rojas  MI, Pozo  G  et al.  Presence of SARS-CoV-2 RNA on surfaces of public places and a transportation system located in a densely populated urban area in South America. Viruses  2022; 14:19. 10.3390/v14010019. PubMed DOI PMC

Santarpia  JL, Rivera  DN, Herrera  VL  et al.  Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci Rep  2020; 10:12732. 10.1038/s41598-020-69286-3. PubMed DOI PMC

Zhang  X, Wu  J, Smith  LM  et al.  Monitoring SARS-CoV-2 in air and on surfaces and estimating infection risk in buildings and buses on a university campus. J Expo Sci Environ Epidemiol  2022; 32:751–8. 10.1038/s41370-022-00442-9. PubMed DOI PMC

Riddell  S, Goldie  S, Hill  A  et al.  The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol J  2020; 17:145. 10.1186/s12985-020-01418-7. PubMed DOI PMC

Yu  W, Huaiyu  T, Li  Z  et al.  Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing. China BMJ Glob Health  2020; 5:e002794. 10.1136/bmjgh-2020-002794. PubMed DOI PMC

Morawska  L, Cao  J. Airborne transmission of SARS-CoV-2: the world should face the reality. Environ Int  2020; 139:105730. 10.1016/j.envint.2020.105730. PubMed DOI PMC

Shen  J, Kong  M, Dong  B  et al.  Airborne transmission of SARS-CoV-2 in indoor environments: a comprehensive review. Sci Technol Built Environ  2021; 27:1331–67. 10.1080/23744731.2021.1977693. DOI

Prentiss  M, Chu  A, Berggren  KK. Finding the infectious dose for COVID-19 by applying an airborne-transmission model to Superspreader events. PloS One  2022; 17:e0265816. 10.1371/journal.pone.0265816. PubMed DOI PMC

Pitol  AK, Julian  TR. Community transmission of SARS-CoV-2 by surfaces: risks and risk reduction strategies. Environ Sci Technol Lett  2021; 8:263–9. 10.1021/acs.estlett.0c00966. PubMed DOI

Cherrie  JW, Cherrie  MPC, Smith  A  et al.  Contamination of air and surfaces in workplaces with SARS-CoV-2 virus: a systematic review. Ann Work Expo Health  2021; 65:879–92. 10.1093/annweh/wxab026. PubMed DOI PMC

Chia  PY, Coleman  KK, Tan  YK  et al.  Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat Commun  2020; 11:2800. 10.1038/s41467-020-16670-2. PubMed DOI PMC

Geng  Y, Wang  Y. Stability and transmissibility of SARS-CoV-2 in the environment. J Med Virol  2023; 95:e28103. 10.1002/jmv.28103. PubMed DOI PMC

Pottage  T, Garratt  I, Onianwa  O  et al.  A comparison of persistence of SARS-CoV-2 variants on stainless steel. J Hosp Infect  2021; 114:163–6. 10.1016/j.jhin.2021.05.015. PubMed DOI PMC

Liu  J, Liu  J, He  Z  et al.  Duration of SARS-CoV-2 positive in quarantine room environments: a perspective analysis. Int J Infect Dis  2021; 105:68–74. 10.1016/j.ijid.2021.02.025. PubMed DOI PMC

Vass  WB, Lednicky  JA, Shankar  SN  et al.  Viable SARS-CoV-2 Delta variant detected in aerosols in a residential setting with a self-isolating college student with COVID-19. J Aerosol Sci  2022; 165:106038. 10.1016/j.jaerosci.2022.106038. PubMed DOI PMC

Lednicky  JA, Lauzardo  M, Alam  MM  et al.  Isolation of SARS-CoV-2 from the air in a car driven by a COVID patient with mild illness. Int J Infect Dis  2021; 108:212–6. 10.1016/j.ijid.2021.04.063. PubMed DOI PMC

Ratnesar-Shumate  S, Bohannon  K, Williams  G  et al.  Comparison of the performance of aerosol sampling devices for measuring infectious SARS-CoV-2 aerosols. Aerosol Sci Tech  2021; 55:975–86. 10.1080/02786826.2021.1910137. PubMed DOI PMC

Maestre  JP, Jarma  D, Yu  J-RF  et al.  Distribution of SARS-CoV-2 RNA signal in a home with COVID-19 positive occupants. Sci Total Environ  2021; 778:146201. 10.1016/j.scitotenv.2021.146201. PubMed DOI PMC

Glinert  I, Ben-Shmuel  A, Szwartcwort-Cohen  M  et al.  Revisiting SARS-CoV-2 environmental contamination by patients with COVID-19: the omicron variant does not differ from previous strains. Int J Infect Dis  2022; 118:211–3. 10.1016/j.ijid.2022.03.001. PubMed DOI PMC

Chen  J, Wang  R, Gilby  NB, Wei  G-W. Omicron variant (B.1.1.529): infectivity, vaccine breakthrough, and antibody resistance. J Chem Inf Model  2022; 62:412–22. 10.1021/acs.jcim.1c01451. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...