Negligible risk of surface transmission of SARS-CoV-2 in public transportation
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Praemium Lumina Quaeruntur
LQ100101902
Czech Academy of Sciences
# 21-19779S
Czech Science Foundation
CZ.01.1.02/0.0/0.0/20_321/0024852
BIOSIP
HVL
CZ.02.1.01/0.0/0.0/15_003/0000447
ELIBIO
European Regional Development Fund
PubMed
37133444
PubMed Central
PMC10481417
DOI
10.1093/jtm/taad065
PII: 7150697
Knihovny.cz E-zdroje
- Klíčová slova
- Prague, SARS-CoV-2, antifouling biosensor, public transportation, qRT-PCR, quartz crystal microbalance, surface contamination,
- MeSH
- COVID-19 * MeSH
- doprava MeSH
- lidé MeSH
- pandemie prevence a kontrola MeSH
- respirační aerosoly a kapénky MeSH
- SARS-CoV-2 * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Exposure to pathogens in public transport systems is a common means of spreading infection, mainly by inhaling aerosol or droplets from infected individuals. Such particles also contaminate surfaces, creating a potential surface-transmission pathway. METHODS: A fast acoustic biosensor with an antifouling nano-coating was introduced to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on exposed surfaces in the Prague Public Transport System. Samples were measured directly without pre-treatment. Results with the sensor gave excellent agreement with parallel quantitative reverse-transcription polymerase chain reaction (qRT-PCR) measurements on 482 surface samples taken from actively used trams, buses, metro trains and platforms between 7 and 9 April 2021, in the middle of the lineage Alpha SARS-CoV-2 epidemic wave when 1 in 240 people were COVID-19 positive in Prague. RESULTS: Only ten of the 482 surface swabs produced positive results and none of them contained virus particles capable of replication, indicating that positive samples contained inactive virus particles and/or fragments. Measurements of the rate of decay of SARS-CoV-2 on frequently touched surface materials showed that the virus did not remain viable longer than 1-4 h. The rate of inactivation was the fastest on rubber handrails in metro escalators and the slowest on hard-plastic seats, window glasses and stainless-steel grab rails. As a result of this study, Prague Public Transport Systems revised their cleaning protocols and the lengths of parking times during the pandemic. CONCLUSIONS: Our findings suggest that surface transmission played no or negligible role in spreading SARS-CoV-2 in Prague. The results also demonstrate the potential of the new biosensor to serve as a complementary screening tool in epidemic monitoring and prognosis.
Department of Cell and Molecular Biology Uppsala University Box 596 751 24 Uppsala Sweden
Genomics Research Center Academia Sinica 128 Academia Rd Sec 2 Nankang Dist Taipei 115 Taiwan
Institute of Physics of the Czech Academy of Sciences Na Slovance 2 182 00 Prague Czech Republic
The European Extreme Light Infrastructure ERIC Za Radnici 835 25241 Dolní Břežany Czech Republic
Zobrazit více v PubMed
Afshinnekoo E, Meydan C, Chowdhury S et al. Geospatial resolution of human and bacterial diversity with city-scale metagenomics. Cell Syst 2015; 1:72–87. 10.1016/j.cels.2015.01.001. PubMed DOI PMC
Wölfel R, Corman VM, Guggemos W et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020; 581:465–9. 10.1038/s41586-020-2196-x. PubMed DOI
Dhama K, Khan S, Tiwari R et al. Coronavirus disease 2019 - COVID-19. Clin Microbiol Rev 2020; 33:e00028–0. 10.1128/CMR.00028-20. PubMed DOI PMC
Klompas M, Baker MA, Rhee C. Airborne transmission of SARS-CoV-2: theoretical considerations and available evidence. JAMA 2020; 324:441–2. 10.1001/jama.2020.12458. PubMed DOI
Hickey JLS, Reist PC. Health significance of airborne microorganisms from wastewater treatment processes part II: health significance and alternatives for action. J Water Pollut Control 1975; 47:2758–73. PubMed
van Doremalen N, Bushmaker T, Morris DH et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020; 382:1564–7. 10.1056/NEJMc2004973. PubMed DOI PMC
Zhao Y, Richardson B, Takle E et al. Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States. Sci Rep 2019; 9:11755. 10.1038/s41598-019-47788-z. PubMed DOI PMC
Zhao B, Dewald C, Hennig M et al. Microorganisms @ materials surfaces in aircraft: potential risks for public health? – a systematic review. Travel Med Infect Dis 2019; 28:6–14. 10.1016/j.tmaid.2018.07.011. PubMed DOI
Feske ML, Teeter LD, Musser JM, Graviss EA. Giving TB wheels: public transportation as a risk factor for tuberculosis transmission. Tuberculosis 2011; 91:S16–23. 10.1016/j.tube.2011.10.005. PubMed DOI
Andrews JR, Morrow C, Wood R. Modeling the role of public transportation in sustaining tuberculosis transmission in South Africa. Am J Epidemiol 2013; 177:556–61. 10.1093/aje/kws331. PubMed DOI PMC
Mangili A, Gendreau MA. Transmission of infectious diseases during commercial air travel. Lancet 2005; 365:989–96. 10.1016/S0140-6736(05)71089-8. PubMed DOI PMC
Tang JW, Wilson P, Shetty N, Noakes CJ. Aerosol-transmitted infections-a new consideration for public health and infection control teams. Curr Treat Options Infect Dis 2015; 7:176–201. 10.1007/s40506-015-0057-1. PubMed DOI PMC
Abrahão JS, Sacchetto L, Rezende IM et al. Detection of SARS-CoV-2 RNA on public surfaces in a densely populated urban area of Brazil: a potential tool for monitoring the circulation of infected patients. Sci Total Environ 2021; 766:142645. 10.1016/j.scitotenv.2020.142645. PubMed DOI PMC
Moriarty LF, Marston BJ, et al. Public health responses to COVID-19 outbreaks on cruise ships — worldwide, February–March 2020. In: Wkly MMM, 2020:347–52. 10.15585/mmwr.mm6912e3. PubMed DOI PMC
Moreno T, Pintó RM, Bosch A et al. Tracing surface and airborne SARS-CoV-2 RNA inside public buses and Subway trains. Environ Int 2021; 147:106326. 10.1016/j.envint.2020.106326. PubMed DOI PMC
Baker RE, Mahmud AS, Wagner CE et al. Epidemic dynamics of respiratory syncytial virus in current and future climates. Nat Commun 2019; 10:5512. 10.1038/s41467-019-13562-y. PubMed DOI PMC
Chu DK, Akl EA, Duda S et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet 2020; 395:1973–87. 10.1016/S0140-6736(20)31142-9. PubMed DOI PMC
Yan EL, Yam. Climate change and the origin of SARS-CoV-2. J Travel Med 2020; 27:taaa224. 10.1093/jtm/taaa224. PubMed DOI PMC
Vandenberg O, Martiny D, Rochas O, van Belkum A, Kozlakidis Z. Considerations for diagnostic COVID-19 tests. Nat Rev Microbiol 2021; 19:171–83. 10.1038/s41579-020-00461-z. PubMed DOI PMC
Iglói Z, leven M, Abdel-Karem Abou-Nouar Z et al. Comparison of commercial realtime reverse transcription PCR assays for the detection of SARS-CoV-2. J Clin Virol 2020; 129:104510. 10.1016/j.jcv.2020.104510. PubMed DOI PMC
Basso D, Aita A, Navaglia F et al. SARS-CoV-2 RNA identification in nasopharyngeal swabs: issues in pre-analytics. Clin Chem Lab Med 2020; 58:1579–86. 10.1515/cclm-2020-0749. PubMed DOI
Xie X, Zhong Z, Zhao W et al. Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: relationship to negative RT-PCR testing. Radiology 2020; 296:E41–5. 10.1148/radiol.2020200343. PubMed DOI PMC
Bullard J, Dust K, Funk D et al. Predicting infectious severe acute respiratory syndrome coronavirus 2 from diagnostic samples. Clin Infect Dis 2020; 71:2663–6. 10.1093/cid/ciaa638. PubMed DOI PMC
Hong K, Cao W, Liu Z et al. Prolonged presence of viral nucleic acid in clinically recovered COVID-19 patients was not associated with effective infectiousness. Emerg Microbes Infect 2020; 9:2315–21. 10.1080/22221751.2020.1827983. PubMed DOI PMC
He L, Chen T, Labuza TP. Recovery and quantitative detection of Thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy. Food Chem 2014; 148:42–6. 10.1016/j.foodchem.2013.10.023. PubMed DOI
Alamer S, Eissa S, Chinnappan R et al. Rapid colorimetric Lactoferrin-based sandwich immunoassay on cotton swabs for the detection of foodborne pathogenic bacteria. Talanta 2018; 185:275–80. 10.1016/j.talanta.2018.03.072. PubMed DOI
Ashley J, Piekarska M, Segers C et al. An SPR based sensor for allergens detection. Biosens Bioelectron 2017; 88:109–13. 10.1016/j.bios.2016.07.101. PubMed DOI
Forinova M, Pilipenco A, Visova I et al. Biosensor for rapid detection of SARS-CoV-2 in real-world samples. IEEE Sensor 2021; 1–4. 10.1109/Sensors47087.2021.9639783. DOI
Wang R, Li Y. Hydrogel based QCM Aptasensor for detection of avian Influenzavirus. Biosens Bioelectron 2013; 42:148–55. 10.1016/j.bios.2012.10.038. PubMed DOI
Wachiralurpan S, Phung-On I, Chanlek N et al. In-situ monitoring of real-time loop-mediated isothermal amplification with QCM: detecting listeria monocytogenes. Biosensors 2021; 11:308. 10.3390/bios11090308. PubMed DOI PMC
Komenda M, Karolyi M, Bulhart V, Žofka J, Brauner T, Hak J, et al. Onemocnění Aktuálně. COVID-19: overview of the current situation for the capital city of Prague. Ministry of Health of The Czech Republic. 2022. https://onemocneni-aktualne.mzcr.cz/covid-19.
World Health Organization . Diagnostic testing for SARS-CoV-2: interim guidance, 11 September 2020. World Health Organization, 2020. https://apps.who.int/iris/handle/10665/334254.
Shu Y, McCauley J. GISAID: global initiative on sharing all influenza data – from vision to reality. Eurosurveillance 2017; 22:30494. 10.2807/1560-7917.ES.2017.22.13.30494. PubMed DOI PMC
Ai O'Toole E, Scher E, Underwood A et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol 2021; 7:veab064. 10.1093/ve/veab064. PubMed DOI PMC
Forinová M, Pilipenco A, Víšová I et al. Functionalized terpolymer-brush-based biointerface with improved antifouling properties for ultra-sensitive direct detection of virus in crude clinical samples. ACS Appl Mater Interfaces 2021; 33:60612–624. 10.1021/acsami.1c16930. PubMed DOI
Dopravní podnik hl. m. Prahy. Prague Transportation Yearbook 2021. Prague: Technická správa komunikacíhl. m. Prahy (TSK), 2021. https://www.tsk-praha.cz/static/udi-rocenka-2021-cz.pdf.
Hoffman JS, Hirano M, Panpradist N et al. Passively sensing SARS-CoV-2 RNA in public transit buses. Sci Total Environ 2022; 821:152790. 10.1016/j.scitotenv.2021.152790. PubMed DOI PMC
Kotwa JD, Jamal AJ, Mbareche H et al. Surface and air contamination with severe acute respiratory syndrome coronavirus 2 from hospitalized coronavirus disease 2019 patients in Toronto, Canada, March–May 2020. J Infect Dis 2022; 225:768–76. 10.1093/infdis/jiab578. PubMed DOI PMC
Guadalupe JJ, Rojas MI, Pozo G et al. Presence of SARS-CoV-2 RNA on surfaces of public places and a transportation system located in a densely populated urban area in South America. Viruses 2022; 14:19. 10.3390/v14010019. PubMed DOI PMC
Santarpia JL, Rivera DN, Herrera VL et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci Rep 2020; 10:12732. 10.1038/s41598-020-69286-3. PubMed DOI PMC
Zhang X, Wu J, Smith LM et al. Monitoring SARS-CoV-2 in air and on surfaces and estimating infection risk in buildings and buses on a university campus. J Expo Sci Environ Epidemiol 2022; 32:751–8. 10.1038/s41370-022-00442-9. PubMed DOI PMC
Riddell S, Goldie S, Hill A et al. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol J 2020; 17:145. 10.1186/s12985-020-01418-7. PubMed DOI PMC
Yu W, Huaiyu T, Li Z et al. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing. China BMJ Glob Health 2020; 5:e002794. 10.1136/bmjgh-2020-002794. PubMed DOI PMC
Morawska L, Cao J. Airborne transmission of SARS-CoV-2: the world should face the reality. Environ Int 2020; 139:105730. 10.1016/j.envint.2020.105730. PubMed DOI PMC
Shen J, Kong M, Dong B et al. Airborne transmission of SARS-CoV-2 in indoor environments: a comprehensive review. Sci Technol Built Environ 2021; 27:1331–67. 10.1080/23744731.2021.1977693. DOI
Prentiss M, Chu A, Berggren KK. Finding the infectious dose for COVID-19 by applying an airborne-transmission model to Superspreader events. PloS One 2022; 17:e0265816. 10.1371/journal.pone.0265816. PubMed DOI PMC
Pitol AK, Julian TR. Community transmission of SARS-CoV-2 by surfaces: risks and risk reduction strategies. Environ Sci Technol Lett 2021; 8:263–9. 10.1021/acs.estlett.0c00966. PubMed DOI
Cherrie JW, Cherrie MPC, Smith A et al. Contamination of air and surfaces in workplaces with SARS-CoV-2 virus: a systematic review. Ann Work Expo Health 2021; 65:879–92. 10.1093/annweh/wxab026. PubMed DOI PMC
Chia PY, Coleman KK, Tan YK et al. Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nat Commun 2020; 11:2800. 10.1038/s41467-020-16670-2. PubMed DOI PMC
Geng Y, Wang Y. Stability and transmissibility of SARS-CoV-2 in the environment. J Med Virol 2023; 95:e28103. 10.1002/jmv.28103. PubMed DOI PMC
Pottage T, Garratt I, Onianwa O et al. A comparison of persistence of SARS-CoV-2 variants on stainless steel. J Hosp Infect 2021; 114:163–6. 10.1016/j.jhin.2021.05.015. PubMed DOI PMC
Liu J, Liu J, He Z et al. Duration of SARS-CoV-2 positive in quarantine room environments: a perspective analysis. Int J Infect Dis 2021; 105:68–74. 10.1016/j.ijid.2021.02.025. PubMed DOI PMC
Vass WB, Lednicky JA, Shankar SN et al. Viable SARS-CoV-2 Delta variant detected in aerosols in a residential setting with a self-isolating college student with COVID-19. J Aerosol Sci 2022; 165:106038. 10.1016/j.jaerosci.2022.106038. PubMed DOI PMC
Lednicky JA, Lauzardo M, Alam MM et al. Isolation of SARS-CoV-2 from the air in a car driven by a COVID patient with mild illness. Int J Infect Dis 2021; 108:212–6. 10.1016/j.ijid.2021.04.063. PubMed DOI PMC
Ratnesar-Shumate S, Bohannon K, Williams G et al. Comparison of the performance of aerosol sampling devices for measuring infectious SARS-CoV-2 aerosols. Aerosol Sci Tech 2021; 55:975–86. 10.1080/02786826.2021.1910137. PubMed DOI PMC
Maestre JP, Jarma D, Yu J-RF et al. Distribution of SARS-CoV-2 RNA signal in a home with COVID-19 positive occupants. Sci Total Environ 2021; 778:146201. 10.1016/j.scitotenv.2021.146201. PubMed DOI PMC
Glinert I, Ben-Shmuel A, Szwartcwort-Cohen M et al. Revisiting SARS-CoV-2 environmental contamination by patients with COVID-19: the omicron variant does not differ from previous strains. Int J Infect Dis 2022; 118:211–3. 10.1016/j.ijid.2022.03.001. PubMed DOI PMC
Chen J, Wang R, Gilby NB, Wei G-W. Omicron variant (B.1.1.529): infectivity, vaccine breakthrough, and antibody resistance. J Chem Inf Model 2022; 62:412–22. 10.1021/acs.jcim.1c01451. PubMed DOI PMC