Carotenoid to bacteriochlorophyll energy transfer in the RC-LH1-PufX complex from Rhodobacter sphaeroides containing the extended conjugation keto-carotenoid diketospirilloxanthin

. 2018 Mar ; 135 (1-3) : 33-43. [epub] 20170520

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28528494

Grantová podpora
BB/M000265/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Odkazy

PubMed 28528494
DOI 10.1007/s11120-017-0397-4
PII: 10.1007/s11120-017-0397-4
Knihovny.cz E-zdroje

RC-LH1-PufX complexes from a genetically modified strain of Rhodobacter sphaeroides that accumulates carotenoids with very long conjugation were studied by ultrafast transient absorption spectroscopy. The complexes predominantly bind the carotenoid diketospirilloxanthin, constituting about 75% of the total carotenoids, which has 13 conjugated C=C bonds, and the conjugation is further extended to two terminal keto groups. Excitation of diketospirilloxanthin in the RC-LH1-PufX complex demonstrates fully functional energy transfer from diketospirilloxanthin to BChl a in the LH1 antenna. As for other purple bacterial LH complexes having carotenoids with long conjugation, the main energy transfer route is via the S2-Qx pathway. However, in contrast to LH2 complexes binding diketospirilloxanthin, in RC-LH1-PufX we observe an additional, minor energy transfer pathway associated with the S1 state of diketospirilloxanthin. By comparing the spectral properties of the S1 state of diketospirilloxanthin in solution, in LH2, and in RC-LH1-PufX, we propose that the carotenoid-binding site in RC-LH1-PufX activates the ICT state of diketospirilloxanthin, resulting in the opening of a minor S1/ICT-mediated energy transfer channel.

Zobrazit více v PubMed

Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2364-9 PubMed

J Phys Chem A. 2015 Nov 19;119(46):11304-12 PubMed

J Phys Chem B. 2013 Aug 8;117(31):9121-8 PubMed

Biochem J. 1994 Feb 15;298 ( Pt 1):197-205 PubMed

Biochim Biophys Acta. 2004 Jul 9;1657(2-3):82-104 PubMed

Biochim Biophys Acta. 2015 Feb;1847(2):189-201 PubMed

Structure. 1996 May 15;4(5):581-97 PubMed

Biochim Biophys Acta. 2012 Sep;1817(9):1616-27 PubMed

Phys Rev B Condens Matter. 1987 Sep 15;36(8):4337-4358 PubMed

Nat Chem. 2011 Sep 23;3(10):763-74 PubMed

Chem Rev. 2004 Apr;104(4):2021-71 PubMed

J Phys Chem B. 2010 Jul 8;114(26):8760-9 PubMed

J Chem Phys. 2015 Jun 7;142(21):212434 PubMed

J Phys Chem B. 2016 Jun 23;120(24):5429-43 PubMed

Mol Microbiol. 2016 Jan;99(2):307-27 PubMed

J Phys Chem A. 2013 Feb 21;117(7):1449-65 PubMed

Nature. 2014 Apr 10;508(7495):228-32 PubMed

J Bacteriol. 2016 Jul 13;198(15):2056-63 PubMed

Chem Rev. 2017 Jan 25;117(2):249-293 PubMed

Acc Chem Res. 2010 Aug 17;43(8):1125-34 PubMed

Nat Chem Biol. 2014 Jul;10(7):492-501 PubMed

Biochim Biophys Acta. 1998 Sep 7;1366(3):301-16 PubMed

J Biol Chem. 2008 May 16;283(20):14002-11 PubMed

Phys Chem Chem Phys. 2009 Oct 21;11(39):8795-803 PubMed

J Phys Chem B. 2007 May 31;111(21):5984-98 PubMed

J Phys Chem B. 2010 Sep 30;114(38):12416-26 PubMed

J Chem Phys. 2009 Jun 7;130(21):214506 PubMed

J Phys Chem B. 2010 Jul 22;114(28):9275-82 PubMed

Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):640-55 PubMed

Philos Trans R Soc Lond B Biol Sci. 2000 Oct 29;355(1402):1345-9 PubMed

Biochim Biophys Acta. 2009 Feb;1791(2):125-31 PubMed

Proc Natl Acad Sci U S A. 2012 May 29;109(22):8570-5 PubMed

Photosynth Res. 2017 Jan;131(1):105-117 PubMed

Biochemistry. 2013 Oct 29;52(43):7575-85 PubMed

FEBS Lett. 2017 Feb;591(4):573-580 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace