Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
BB/G021546/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
22586075
PubMed Central
PMC3365192
DOI
10.1073/pnas.1201413109
PII: 1201413109
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny chemie metabolismus MeSH
- bakteriochlorofyly chemie metabolismus MeSH
- buněčná membrána metabolismus MeSH
- karotenoidy chemie metabolismus MeSH
- kyslík metabolismus MeSH
- molekulární struktura MeSH
- přenos energie účinky záření MeSH
- Proteobacteria chemie metabolismus MeSH
- Rhodobacter sphaeroides chemie metabolismus MeSH
- spektrofotometrie MeSH
- světlo MeSH
- světlosběrné proteinové komplexy chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- bakteriální proteiny MeSH
- bakteriochlorofyly MeSH
- karotenoidy MeSH
- kyslík MeSH
- PufX protein, Rhodobacter MeSH Prohlížeč
- spheroidene MeSH Prohlížeč
- spheroidenone MeSH Prohlížeč
- světlosběrné proteinové komplexy MeSH
Carotenoids are known to offer protection against the potentially damaging combination of light and oxygen encountered by purple phototrophic bacteria, but the efficiency of such protection depends on the type of carotenoid. Rhodobacter sphaeroides synthesizes spheroidene as the main carotenoid under anaerobic conditions whereas, in the presence of oxygen, the enzyme spheroidene monooxygenase catalyses the incorporation of a keto group forming spheroidenone. We performed ultrafast transient absorption spectroscopy on membranes containing reaction center-light-harvesting 1-PufX (RC-LH1-PufX) complexes and showed that when oxygen is present the incorporation of the keto group into spheroidene, forming spheroidenone, reconfigures the energy transfer pathway in the LH1, but not the LH2, antenna. The spheroidene/spheroidenone transition acts as a molecular switch that is suggested to twist spheroidenone into an s-trans configuration increasing its conjugation length and lowering the energy of the lowest triplet state so it can act as an effective quencher of singlet oxygen. The other consequence of converting carotenoids in RC-LH1-PufX complexes is that S(2)/S(1)/triplet pathways for spheroidene is replaced with a new pathway for spheroidenone involving an activated intramolecular charge-transfer (ICT) state. This strategy for RC-LH1-PufX-spheroidenone complexes maintains the light-harvesting cross-section of the antenna by opening an active, ultrafast S(1)/ICT channel for energy transfer to LH1 Bchls while optimizing the triplet energy for singlet oxygen quenching. We propose that spheroidene/spheroidenone switching represents a simple and effective photoprotective mechanism of likely importance for phototrophic bacteria that encounter light and oxygen.
Faculty of Science University of South Bohemia Branišovská 31 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Polívka T, Frank HA. Molecular factors controlling photosynthetic light harvesting by carotenoids. Acc Chem Res. 2010;43:1125–1134. PubMed PMC
Lang HP, Hunter CN. The relationship between carotenoid biosynthesis and the assembly of the light-harvesting LH2 complex in Rhodobacter sphaeroides. Biochem J. 1994;298:197–205. PubMed PMC
Plumley FG, Schmidt GW. Reconstitution of chlorophyll a/b light-harvesting complexes—xanthophyll-dependent assembly and energy transfer. Proc Natl Acad Sci USA. 1987;84:146–150. PubMed PMC
Demmig-Adams B, Adams WW. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1996;1:21–26.
Wilson A, et al. A photoactive carotenoid protein acting as light intensity sensor. Proc Natl Acad Sci USA. 2008;105:12075–12080. PubMed PMC
Sistrom WR, Griffiths M, Stanier RY. The biology of a photosynthetic bacterium which lacks coloured carotenoids. J Cell Comp Physiol. 1956;48:473–516. PubMed
Clayton RK, Smith C. Rhodopseudomonas sphaeroides: high catalase and blue-green double mutants. Biochem Biophys Res Commun. 1960;3:143–145. PubMed
Hunter CN, Kramer HJM, van Grondelle R. Linear dichroism and fluorescence emission of antenna complexes during photosynthetic unit assembly in Rhodopseudomonas sphaeroides. Biochim Biophys Acta. 1985;807:44–51.
Frese RN, et al. The long-range organization of a native photosynthetic membrane. Proc Natl Acad Sci USA. 2004;101:17994–17999. PubMed PMC
Şener MK, Olsen JD, Hunter CN, Schulten K. Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle. Proc Natl Acad Sci USA. 2007;104:15723–15728. PubMed PMC
Tucker JD, et al. Membrane invagination in Rhodobacter sphaeroides is initiated at curved regions of the cytoplasmic membrane, then forms both budded and fully detached spherical vesicles. Mol Microbiol. 2010;76:833–847. PubMed
Sundström V, Pullerits T, van Grondelle R. Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B. 1999;103:2327–2346.
Polívka T, Sundström V. Ultrafast dynamics of carotenoid excited states: From solution to natural and artificial systems. Chem Rev. 2004;104:2021–2071. PubMed
Polívka T, Pullerits T, Frank HA, Cogdell RJ, Sundström V. Ultrafast formation of a carotenoid radical in LH2 antenna complexes of purple bacteria. J Phys Chem B. 2004;108:15398–15407.
Cong H, et al. Ultrafast time-resolved carotenoid to bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria. J Phys Chem B. 2008;112:10689–10703. PubMed PMC
Zhang JP, et al. Mechanism of the carotenoid-to-bacteriochlorophyll energy transfer via the S1 state in the LH2 complexes from purple bacteria. J Phys Chem B. 2000;104:3683–3691.
Rademaker H, Hoff AJ, van Grondelle R, Duysens LNM. Carotenoid triplet yields in normal and deuterated Rhodospirillum rubrum. Biochim Biophys Acta. 1980;592:240–257. PubMed
Akahane J, Rondonuwu FS, Fiedor L, Watanabe Y, Koyama Y. Dependence of singlet-energy transfer on the conjugation length of carotenoids reconstituted into the LH1 complex from Rhodospirillum rubrum G9. Chem Phys Lett. 2004;393:184–191.
Billsten HH, et al. Dynamics of energy transfer from lycopene to bacteriochlorophyll in genetically-modified LH2 complexes of Rhodobacter sphaeroides. Biochemistry. 2002;41:4127–4136. PubMed
Zigmantas D, Hiller RG, Sundström V, Polívka T. Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state. Proc Natl Acad Sci USA. 2002;99:16760–16765. PubMed PMC
Polívka T, Hiller RG, Frank HA. Spectroscopy of the peridinin-chlorophyll-a protein: Insight into light-harvesting strategy of marine algae. Arch Biochem Biophys. 2007;458:111–120. PubMed
Papagiannakis E, van Stokkum IHM, Fey H, Buchel C, van Grondelle R. Spectroscopic characterization of the excitation energy transfer in the fucoxanthin-chlorophyll protein of diatoms. Photosynth Res. 2005;86:241–250. PubMed
Polívka T, et al. Energy transfer in the major intrinsic light-harvesting complex from Amphidinium carterae. Biochemistry. 2006;45:8516–8526. PubMed
Glaeser J, Klug G. Photo-oxidative stress in Rhodobacter sphaeroides: Protective role of carotenoids and expression of selected genes. Microbiology. 2005;151:1927–1938. PubMed
Magis JG, et al. Light harvesting, energy transfer and electron cycling of a native photosynthetic membrane adsorbed onto a gold-surface. Biochim Biophys Acta Biomembr. 2010;1798:637–645. PubMed
Magis JG, et al. Use of engineered unique cysteine residues to facilitate oriented coupling of proteins directly to a gold substrate. Photochem Photobiol. 2011;87:1050–1057. PubMed
Yeliseev AA, Eraso JM, Kaplan S. Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: Involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability. J Bacteriol. 1996;178:5877–5883. PubMed PMC
Farchaus JW, Barz WP, Grunberg H, Oesterhelt D. Studies on the expression of the pufX polypeptide and its requirement for photoheterotrophic growth in Rhodobacter sphaeroides. EMBO J. 1992;11:2779–2788. PubMed PMC
Pan J, et al. Carotenoid excited-state properties in photosynthetic purple bacterial reaction centers: Effects of the protein environment. J Phys Chem B. 2011;115:7058–7068. PubMed
Andersson PO, Cogdell RJ, Gillbro T. Femtosecond dynamics of carotenoid-to-bacteriochlorophyll a energy transfer in the light-harvesting antenna complexes from the purple bacterium Chromatium purpuratum. Chem Phys. 1996;210:195–217.
Papagiannakis E, Kennis JTM, van Stokkum IHM, Cogdell RJ, van Grondelle R. An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting. Proc Natl Acad Sci USA. 2002;99:6017–6022. PubMed PMC
Frank HA, et al. Effect of the solvent environment on the spectroscopic properties and dynamics of the lowest excited states of carotenoids. J Phys Chem B. 2000;104:4569–4577.
Zigmantas D, et al. Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys Chem Chem Phys. 2004;6:3009–3016.
Niedzwiedzki DM, Fuciman M, Frank HA, Blankenship RE. Energy transfer in an LH4-like light harvesting complex from the aerobic purple photosynthetic bacterium Roseobacter denitrificans. Biochim Biophys Acta. 2011;1807:518–528. PubMed
Zigmantas D, Hiller RG, Yartsev A, Sundström V, Polívka T. Dynamics of excited states of the carotenoid peridinin in polar solvents: Dependence on excitation wavelength, viscosity, and temperature. J Phys Chem B. 2003;107:5339–5348.
Enriquez MM, et al. The intramolecular charge transfer state in carbonyl-containing polyenes and carotenoids. J Phys Chem B. 2010;114:12416–12426. PubMed PMC
Polívka T, Kerfeld CA, Pascher T, Sundström V. Spectroscopic properties of the carotenoid 3′-hydroxyechinenone in the orange carotenoid protein from the cyanobacterium Arthrospira maxima. Biochemistry. 2005;44:3994–4003. PubMed
Wilson A, et al. Structural determinants underlying photoprotection in the photoactive orange carotenoid protein of cyanobacteria. J Biol Chem. 2010;285:18364–18375. PubMed PMC
Chábera P, Durchan M, Shih PM, Kerfeld CA, Polívka T. Excited-state properties of the 16 kDa red carotenoid protein from Arthrospira maxima. Biochim Biophys Acta. 2011;1807:30–35. PubMed
de Weerd FL, Dekker JP, van Grondelle R. Dynamics of beta-carotene-to-chlorophyll singlet energy transfer in the core of photosystem II. J Phys Chem B. 2003;107:6214–6220.
Walla PJ, Linden PA, Ohta K, Fleming GR. Excited-state kinetics of the carotenoid S1 state in LHC II and two-photon excitation spectra of lutein and beta-carotene in solution: Efficient car S1-Chl electronic energy transfer via hot S1 states? J Phys Chem A. 2002;106:1909–1916.
Durchan M, et al. Carotenoids in energy transfer and quenching processes in Pcb and Pcb-PS I complexes from Prochlorothrix hollandica. J Phys Chem B. 2010;114:9275–9282. PubMed
Olsen JD, Sockalingum GD, Robert B, Hunter CN. Modification of a hydrogen bond to a bacteriochlorophyll a molecule in the light-harvesting 1 antenna of Rhodobacter sphaeroides. Proc Natl Acad Sci USA. 1994;91:7124–7128. PubMed PMC
Sturgis J, Olsen CN, Robert B, Hunter CN. The functions of conserved tryptophan residues of the core light harvesting complex of Rhodobacter sphaeroides. Biochemistry. 1997;36:2772–2778. PubMed
Babst M, Albrecht H, Wegmann I, Brunisholz R, Zuber H. Single amino acid substitutions in the B870 alpha and beta light- harvesting polypeptides of Rhodobacter capsulatus. Structural and spectral effects. Eur J Biochem. 1991;202:277–284. PubMed
Richter P, Brand M, Drews G. Characterization of LH1- and LH1+ Rhodobacter capsulatus pufA mutants. J Bacteriol. 1992;174:3030–3041. PubMed PMC
Kleinschmidt M, Marian CM, Waletzke M, Grimme S. Parallel multireference configuration interaction calculations on mini-beta-carotenes and beta-carotene. J Chem Phys. 2009;130:044708. PubMed
Koepke J, Hu XC, Muenke C, Schulten K, Michel H. The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure. 1996;4:581–597. PubMed
Di Mascio P, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys. 1989;274:532–538. PubMed
Yurkov V, Csotonyi JT. New light on aerobic anoxygenic phototrophs. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT, editors. The Purple Phototrophic Bacteria. Dordrecht: Springer; 2009. pp. 31–55.
Jones MR, et al. Mutants of Rhodobacter sphaeroides lacking one or more pigment protein complexes and complementation with reaction centre, LH1, and LH2 genes. Mol Microbiol. 1992;6:1173–1184. PubMed
Ratcliffe EC, et al. Experimental evidence that the membrane-spanning helix of PufX adopts a bent conformation that facilitates dimerisation of the Rhodobacter sphaeroides RC-LH1 complex through N-terminal interactions. Biochim Biophys Acta. 2011;1807:95–107. PubMed
van Stokkum IHM, Larsen DS, van Grondelle R. Global and target analysis of time-resolved spectra. Biochim Biophys Acta Bioenerg. 2004;1657:82–104. PubMed