Structure elucidation of the novel carotenoid gemmatoxanthin from the photosynthetic complex of Gemmatimonas phototrophica AP64

. 2021 Aug 05 ; 11 (1) : 15964. [epub] 20210805

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34354109
Odkazy

PubMed 34354109
PubMed Central PMC8342508
DOI 10.1038/s41598-021-95254-6
PII: 10.1038/s41598-021-95254-6
Knihovny.cz E-zdroje

Gemmatimonas phototrophica AP64 is the first phototrophic representative of the bacterial phylum Gemmatimonadetes. The cells contain photosynthetic complexes with bacteriochlorophyll a as the main light-harvesting pigment and an unknown carotenoid with a single broad absorption band at 490 nm in methanol. The carotenoid was extracted from isolated photosynthetic complexes, and purified by liquid chromatography. A combination of nuclear magnetic resonance (1H NMR, COSY, 1H-13C HSQC, 1H-13C HMBC, J-resolved, and ROESY), high-resolution mass spectroscopy, Fourier-transformed infra-red, and Raman spectroscopy was used to determine its chemical structure. The novel linear carotenoid, that we have named gemmatoxanthin, contains 11 conjugated double bonds and is further substituted by methoxy, carboxyl and aldehyde groups. Its IUPAC-IUBMB semi-systematic name is 1'-Methoxy-19'-oxo-3',4'-didehydro-7,8,1',2'-tetrahydro- Ψ, Ψ carotene-16-oic acid. To our best knowledge, the presence of the carboxyl, methoxy and aldehyde groups on a linear C40 carotenoid backbone is reported here for the first time.

Zobrazit více v PubMed

Blankenship RE. Early evolution of photosynthesis. Plant Physiol. 2010;154:434–438. doi: 10.1104/pp.110.161687. PubMed DOI PMC

Hohmann-Marriott MF, Blankenship RE. Evolution of photosynthesis. Annu. Rev. Plant Biol. 2011;62:515–548. doi: 10.1146/annurev-arplant-042110-103811. PubMed DOI

Zeng Y, et al. Metagenomic evidence for the presence of phototrophic Gemmatimonadetes bacteria in diverse environments. Environ. Microbiol. Rep. 2016;8:139–149. doi: 10.1111/1758-2229.12363. PubMed DOI

Mujakić I, et al. Common presence of phototrophic Gemmatimonadota in temperate freshwater lakes. mSystems. 2021;6:e01241–e11220. doi: 10.1128/mSystems.01241-20. PubMed DOI PMC

Zeng Y, et al. Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. Int. J. Syst. Evol. Microbiol. 2015;65:2410–2419. doi: 10.1099/ijs.0.000272. PubMed DOI

Zeng Y, et al. Gemmatimonas groenlandica sp. nov. Is an aerobic anoxygenic phototroph in the phylum Gemmatimonadetes. Front. Microbiol. 2021 doi: 10.3389/fmicb.2020.606612. PubMed DOI PMC

Koblížek M, et al. Utilization of light energy in phototrophic Gemmatimonadetes. J. Photochem. Photobiol. B. 2020;213:112085. doi: 10.1016/j.jphotobiol.2020.112085. PubMed DOI

Zeng Y, Feng FY, Medová H, Dean J, Koblížek M. Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc. Natl. Acad. Sci. USA. 2014;111:7795–7800. doi: 10.1073/pnas.1400295111. PubMed DOI PMC

Takaichi S, Maoka T, Takasaki K, Hanada S. Carotenoids of Gemmatimonas aurantiaca (Gemmatimonadetes): identification of a novel carotenoid, deoxyoscillol 2-rhamnoside, and proposed biosynthetic pathway of oscillol 2,2'-dirhamnoside. Microbiology. 2010;156:757–763. doi: 10.1099/mic.0.034249-0. PubMed DOI

Yurkov, V. & Csotonyi, J. T. in The Purple Phototrophic Bacteria (eds C. Neil Hunter, Fevzi Daldal, Marion C. Thurnauer, & J. Thomas Beatty) pp 31–55 (Springer, Berlin, 2009).

Dachev M, et al. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica. PLoS Biol. 2017;15:e2003943. doi: 10.1371/journal.pbio.2003943. PubMed DOI PMC

Zigmantas D, et al. Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys. Chem. Chem. Phys. 2004;6:3009–3016. doi: 10.1039/B315786E. DOI

Lóránd T, Deli J, Molnár P, Tóth G. FT-IR study of some carotenoids. Helv. Chim. Acta. 2002;85:1691–1697. doi: 10.1002/1522-2675(200206)85:6<1691::aid-hlca1691>3.0.co;2-g. DOI

Degen IA. Detection of methoxyl group by infrared spectroscopy. Appl. Spectrosc. 1968;22:164–166. doi: 10.1366/000370268774383444. DOI

Colthup, N. B., Daly, L. H. & Wiberley, S. E. in Introduction to Infrared and Raman Spectroscopy. 3rd edn (eds N. B. Colthup, L. H. Daly, & S. E. Wiberley) pp. 327–337 (Academic Press, Cambridge, 1990).

Coates, J. in Encyclopedia of Analytical Chemistry (eds Meyers, R. A. & McKelvy, M. L.). 10.1002/9780470027318.a5606 (2006).

Jagannadham MV, Rao VJ, Shivaji S. The major carotenoid pigment of a psychrotrophic Micrococcus-Roseus strain - purification, structure, and interaction with synthetic membranes. J. Bacteriol. 1991;173:7911–7917. doi: 10.1128/jb.173.24.7911-7917.1991. PubMed DOI PMC

Colthup NB, Daly LH, Wiberley SE. Introduction to Infrared and Raman Spectroscopy. Cambridge: Academic Press; 1990. pp. 327–337.

Fujioka N, Morimoto Y, Arai T, Kikuchi M. Discrimination between normal and malignant human gastric tissues by Fourier transform infrared spectroscopy. Cancer Detect. Prev. 2004;28:32–36. doi: 10.1016/j.cdp.2003.11.004. PubMed DOI

Schulz H, Baranska M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007;43:13–25. doi: 10.1016/j.vibspec.2006.06.001. DOI

Mendes-Pinto MM, et al. Electronic absorption and ground state structure of carotenoid molecules. J. Phys. Chem. B. 2013;117:11015–11021. doi: 10.1021/jp309908r. PubMed DOI

Tschirner N, et al. Resonance Raman spectra of beta-carotene in solution and in photosystems revisited: an experimental and theoretical study. Phys. Chem. Chem. Phys. 2009;11:11471–11478. doi: 10.1039/b917341b. PubMed DOI

Edwards HGM, Moody CD, Villar SEJ, Wynn-Williams DD. Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: evaluation for Mars Lander missions. Icarus. 2005;174:560–571. doi: 10.1016/j.icarus.2004.07.029. DOI

Jehlička J, et al. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology. Philos. Trans. R. Soc. A. 2014 doi: 10.1098/rsta.2014.0199. PubMed DOI PMC

Shao YN, Gu WM, Jiang LJ, Zhu YM. Study on the visualization of pigment in Haematococcus pluvialis by Raman spectroscopy technique. Sci. Rep.-UK. 2019 doi: 10.1038/s41598-019-47208-2. PubMed DOI PMC

Ferreira GB, Comerlato NM, Wardell JL, Hollauer E. Vibrational spectra of bis(dmit) complexes of main group metals: IR, Raman and ab initio calculations. J. Braz. Chem. Soc. 2004;15:951–963. doi: 10.1590/S0103-50532004000600025. PubMed DOI

Yabuzaki J. Carotenoids database: structures, chemical fingerprints and distribution among organisms. Database. 2017 doi: 10.1093/database/bax004. PubMed DOI PMC

Andrewes AG, Liaaen-Jensen S. Bacterial carotenoids XXXVII. Carotenoids of thiorhodaceae 9. Structural elucidation of five minor carotenoids from thiothece gelatinosa. Acta Chem. Scand. 1972;26:2194–2204. doi: 10.3891/acta.chem.scand.26-2194. PubMed DOI

Graham JE, Lecomte JTJ, Bryant DA. Synechoxanthin, an Aromatic C40 Xanthophyll that is a major carotenoid in the Cyanobacterium Synechococcus sp. PCC 7002. J. Nat. Prod. 2008;71:1647–1650. doi: 10.1021/np800310b. PubMed DOI

Nupur. et al. ProCarDB: a database of bacterial carotenoids. BMC Microbiol.16, 96. 10.1186/s12866-016-0715-6 (2016). PubMed PMC

Britton G, Liaaen-Jensen S, Pfander H. Carotenoids. Basel: Birkhäuser; 2004. pp. 271–280.272.

Neto FC, et al. Re-investigation of the fragmentation of protonated carotenoids by electrospray ionization and nanospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2016;30:1540–1548. doi: 10.1002/rcm.7589. PubMed DOI

Kane MA, Napoli JL. Quantification of endogenous retinoids. Methods Mol. Biol. 2010;652:1–54. doi: 10.1007/978-1-60327-325-1_1. PubMed DOI PMC

Vlachos N, et al. Applications of Fourier transform-infrared spectroscopy to edible oils. Anal. Chim Acta. 2006;573–574:459–465. doi: 10.1016/j.aca.2006.05.034. PubMed DOI

Schulz H, Baranska M, Baranski R. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers. 2005;77:212–221. doi: 10.1002/bip.20215. PubMed DOI

de Oliveira VE, Castro HV, Edwards HGM, de Oliveira LFC. Carotenes and carotenoids in natural biological samples: a Raman spectroscopic analysis. J. Raman Spectrosc. 2010;41:642–650. doi: 10.1002/jrs.2493. DOI

de Oliveira VE, et al. Carotenoids and β-cyclodextrin inclusion complexes: Raman spectroscopy and theoretical investigation. J. Phys. Chem. A. 2011;115:8511–8519. doi: 10.1021/jp2028142. PubMed DOI

Fuciman M, Keşan G, LaFountain AM, Frank HA, Polívka T. Tuning the spectroscopic properties of aryl carotenoids by slight changes in structure. J. Phys. Chem. B. 2015;119:1457–1467. doi: 10.1021/jp512354r. PubMed DOI

Parker SF, et al. Raman spectrum of beta-carotene using laser lines from green (514.5 nm) to near-infrared (1064 nm): implications for the characterization of conjugated polyenes. Appl. Spectrosc. 1999;53:86–91. doi: 10.1366/0003702991945263. DOI

Leopold LF, et al. Cellular internalization of beta-carotene loaded polyelectrolyte multilayer capsules by Raman mapping. Molecules. 2020;25:1477. doi: 10.3390/molecules25071477. PubMed DOI PMC

Tarantilis PA, Beljebbar A, Manfait M, Polissiou M. FT-IR, FT-Raman spectroscopic study of carotenoids from saffron (Crocus sativus L) and some derivatives. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 1998;54:651–657. doi: 10.1016/S1386-1425(98)00024-9. DOI

Amaya DB. A Guide to Carotenoid Analysis in Food. OMNI Research. ILSI Press; 2001.

Xiao Y-D, et al. Thermal degradation kinetics of all-trans and cis-carotenoids in a light-induced model system. Food Chem. 2018;239:360–368. doi: 10.1016/j.foodchem.2017.06.107. PubMed DOI

Borsarelli, C. & Mercadante, A. Z. in Carotenoids: Physical, Chemical, and Biological Functions and Properties (ed Landrum, J. T.) 229–254 (CRC Press, Boca Raton, 2009).

Koblížek M, Zeng Y, Horák A, Oborník M. Regressive evolution of photosynthesis in the Roseobacter clade. Adv. Bot. Res. 2013;66:385–405. doi: 10.1016/B978-0-12-397923-0.00013-8. DOI

Šlouf V, et al. Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties. Proc. Natl. Acad. Sci. USA. 2012;109:8570–8575. doi: 10.1073/pnas.1201413109. PubMed DOI PMC

Šlouf V, et al. Carotenoid charge transfer states and their role in energy transfer processes in LH1–RC complexes from aerobic anoxygenic phototrophs. J. Phys. Chem. B. 2013;117:10987–10999. doi: 10.1021/jp309278y. PubMed DOI

Šlouf V, et al. Carotenoid to bacteriochlorophyll energy transfer in the RC-LH1-PufX complex from Rhodobacter sphaeroides containing the extended conjugation keto-carotenoid diketospirilloxanthin. Photosynthesis Res. 2018;135:33–43. doi: 10.1007/s11120-017-0397-4. PubMed DOI

Magdaong NM, et al. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions. J. Phys. Chem. B. 2014;118:11172–11189. doi: 10.1021/jp5070984. PubMed DOI PMC

Ola Andersson P, Cogdell RJ, Gillbro T. Femtosecond dynamics of carotenoid-to-bacteriochlorophyll a energy transfer in the light-harvesting antenna complexes from the purple bacterium Chromatium purpuratum. Chem. Phys. 1996;210:195–217. doi: 10.1016/0301-0104(96)00172-3. DOI

Pfennig N, Markham MC, Liaaen-Jensen S. Carotenoids of thiorhodaceae. Arch. Mikrobiol. 1968;62:178–191. doi: 10.1007/BF00410404. PubMed DOI

Takaichi, S. in The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration Vol. 8 (ed Young A.J. Frank H.A., Britton G., Cogdell R.J.) (Springer, Dordrecht, 1999).

Kot AM, Błażejak S, Kurcz A, Gientka I, Kieliszek M. Rhodotorula glutinis—potential source of lipids, carotenoids, and enzymes for use in industries. Appl. Microbiol. Biotechnol. 2016;100:6103–6117. doi: 10.1007/s00253-016-7611-8. PubMed DOI PMC

Graham JE, Bryant DA. The biosynthetic pathway for synechoxanthin, an aromatic carotenoid synthesized by the euryhaline, unicellular Cyanobacterium Synechococcus sp. Strain PCC 7002. J. Bacteriol. 2008;190:7966–7974. doi: 10.1128/jb.00985-08. PubMed DOI PMC

Moliné, M., Libkind, D. & van Broock, M. in Microbial Carotenoids From Fungi: Methods and Protocols (ed José-Luis Barredo) 275–283 (Humana Press, Totowa, 2012).

Takaichi S, Shimada K. Characterization of carotenoids in photosynthetic bacteria. Methods Enzymol. 1992;213:374–385. doi: 10.1016/0076-6879(92)13139-O. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...