Elimination of primordial germ cells in sturgeon embryos by ultraviolet irradiation
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29635315
PubMed Central
PMC6134207
DOI
10.1093/biolre/ioy076
PII: 4964749
Knihovny.cz E-zdroje
- MeSH
- embryo nesavčí účinky záření MeSH
- embryonální zárodečné buňky účinky záření transplantace MeSH
- ohrožené druhy * MeSH
- ryby embryologie MeSH
- sterilizace reprodukční metody veterinární MeSH
- ultrafialové záření * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A technique for rescuing and propagating endangered species involves implanting germ line stem cells into surrogates of a host species whose primordial germ cells (PGCs) have been destroyed. We induced sterilization in sterlet (Acipenser ruthenus) embryos by means of ultraviolet (UV) irradiation at the vegetal pole, the source of early-stage PGCs of sturgeon eggs. The optimal cell stage and length of UV irradiation for the effective repression of the developing PGCs were determined by exposing embryos at the one- to four-cell stage to different doses of irradiation at a wavelength of 254 nm (the optimal absorbance spectrum for germplasm destruction). The vegetal pole region of the embryos was labeled immediately upon irradiation with GFP bucky ball mRNA to monitor the amount of germ plasm and FITC-dextran (M.W. 500,000) to obtain the number of PGCs in the embryos. The size of the germ plasm and number of surrounding mitochondria in the irradiated embryos and controls were observed using transmission electron microscopy, which revealed a drastic reduction in both on the surface of the vegetal pole in the treated embryos. Furthermore, the reduction in the number of PGCs was proportional to the dose of UV irradiation. Under the conditions tested, optimum irradiation for PGCs removal was seen at 360 mJ/cm2 at the one-cell stage. Although some PGCs were observed after the UV irradiation, they significantly reduced in number as the embryos grew. We conclude that UV irradiation is a useful and efficient technique to induce sterility in surrogate sturgeons.
Zobrazit více v PubMed
Wong T-T, Zohar Y. Production of reproductively sterile fish: a mini-review of germ cell elimination technologies. Gen Comp Endocrinol 2015; 221:3–8. PubMed
Robles V, Riesco MF, Pšenička M, Saito T, Valcarce DG, Cabrita E, Herráez P. Biology of teleost primordial germ cells (PGCs) and spermatogonia: biotechnological applications. Aquaculture 2016; 472:4–20.
Pšenička M, Saito T, Linhartová Z, Gazo I. Isolation and transplantation of sturgeon early-stage germ cells. Theriogenology 2015; 83:1085–1092. PubMed
Okutsu T, Yano A, Nagasawa K, Shikina S, Kobayashi T, Takeuchi Y, Yoshizaki G. Manipulation of fish germ cell: visualization, cryopreservation and transplantation. J Reprod Dev 2006; 52:685–693. PubMed
Yamaha E, Saito T, Goto R, Arai K. Developmental biotechnology for aquaculture, with special reference to surrogate production in teleost fishes. J Sea Res 2007; 58:8–22.
Pšenička M, Saito T, Rodina M, Dzyuba B. Cryopreservation of early stage Siberian sturgeon Acipenser baerii germ cells, comparison of whole tissue and dissociated cells. Cryobiology 2016; 72:119–122. PubMed
Linhartová Z, Saito T, Kaspar V, Rodina M, Prášková E, Hagihara S, Pšenička M. Sterilization of sterlet Acipenser ruthenus by using knockdown agent, antisense morpholino oligonucleotide, against dead end gene. Theriogenology 2015; 84:1246–1255.e1. PubMed
Havelka M, Hulák M, Ráb P, Rábová M, Lieckfeldt D, Ludwig A, Rodina M, Gela D, Pšenička M, Bytyutskyy D, Flajshans M. Fertility of a spontaneous hexaploid male Siberian sturgeon, Acipenser baerii. BMC Genet 2014; 15:1246–1255.e1. PubMed PMC
Golpour A, Siddique M, Siqueira-Silva DH. Induced sterility in fish and its potential and challenges for aquaculture and germ cell transplantation technology: a review. Biologia 2016; 71:853–864.
Golpour A, Broquard C, Milla S, Dadras H, Baloch AR, Saito T, Psenicka M. Gonad histology and serum 11-KT profile during the annual reproductive cycle in sterlet sturgeon adult males, Acipenser ruthenus. Reprod Dom Anim 2017; 52:319–326. PubMed
Shinomiya A, Hamaguchi S, Shibata N. Sexual differentiation of germ cell deficient gonads in the medaka, Oryzias latipes. J Exp Zool 2001; 290:402–410. PubMed
Majhi SK, Hattori RS, Rahman SM, Suzuki T, Strüssmann CA. Experimentally induced depletion of germ cells in sub-adult Patagonian pejerrey (Odontesthes hatcheri). Theriogenology 2009; 71:1162–1172. PubMed
de Siqueira-Silva DH Silva APDS, Ninhaus-Silveira A, Veríssimo-Silveira R. The effects of temperature and busulfan (Myleran) on the yellowtail tetra Astyanax altiparanae (Pisces, Characiformes) spermatogenesis. Theriogenology 2015; 84:1033–1042. PubMed
Saito T, Pšenička M, Goto R, Adachi S, Inoue K, Arai K, Yamaha E. The origin and migration of primordial germ cells in sturgeons. PLoS ONE 2014; 9:e86861. PubMed PMC
Houston DW, King ML. A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development 2000; 127:447–456. PubMed
Smith LD. The role of a “germinal plasm” in the formation of primordial germ cells in Rana pipiens. Dev Biol 1966; 14:330–347. PubMed
Tanabe K, Kotani M. Relationship between the amount of the ‘germinal plasm’ and the number of primordial germ cells in Xenopus laevis. J Embryol Exp Morphol 1974; 31:89–98. PubMed
Ginsburg AS, Dettlaff TA. The russian sturgeon Acipenser guldensadti. Part 1. Gametes and early development up to time of hatching. In: Dettlaff TA, Vassetzky SG (eds.), Animal Species for Developmental Studies, 2, Vertebrates: Springer; 1991:16–65.
Saito T, Pšenička M. Novel technique for visualizing primordial germ cells in sturgeons (Acipenser ruthenus, A. gueldenstaedtii, A. baerii, and Huso huso). Biol Reprod 2015; 115128314. PubMed
Bontems F, Stein A, Marlow F, Lyautey J, Gupta T, Mullins MC, Dosch R. Bucky ball organizes germ plasm assembly in zebrafish. Curr Biol 2009; 19:414–422. PubMed
Ikenishi K, Kotani M, Tanabe K. Ultrastructural changes associated with UV irradiation in the “germinal plasm” of Xenopus laevis. Dev Biol 1974; 36:155–168. PubMed
Savage RM, Danilchik MV. Dynamics of germ plasm localization and its inhibition by ultraviolet irradiation in early cleavage Xenopus embryos. Dev Biol 1993; 157:371–382. PubMed
Elinson RP, Rowning B. A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev Biol 1988; 128:185–197. PubMed
Saito T, Otani S, Fujimoto T, Suzuki T, Nakatsuji T, Arai K, Yamaha E. The germ line lineage in ukigori, Gymnogobius species (Teleostei: Gobiidae) during embryonic development. Int J Dev Biol 2004; 48:1079–1085. PubMed
Fujimoto T, Kataoka T, Sakao S, Saito T, Yamaha E, Arai K. Developmental stages and germ cell lineage of the loach (Misgurnus anguillicaudatus). Zool Sci 2006; 23:977–989. PubMed
Youn BW, Malacinski GM. Action spectrum for ultraviolet irradiation inactivation of a cytoplasmic component(s) required for neural induction in the amphibian egg. J Exp Zool 1980; 211:369–377.
Slanchev K, Stebler J, la Cueva-Méndez de G, Raz E. Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci USA 2005; 102:4074–4079. PubMed PMC
Kurokawa H, Saito D, Nakamura S, Katoh-Fukui Y, Ohta K, Baba T, Morohashi K-I, Tanaka M. Germ cells are essential for sexual dimorphism in the medaka gonad. Proc Natl Acad Sci USA 2007; 104:16958–16963. PubMed PMC
Fujimoto T, Nishimura T, Goto R, Kawakami Y, Yamaha E, Arai K. Sexual dimorphism of gonadal structure and gene expression in germ cell-deficient loach, a teleost fish. Proc Natl Acad Sci USA 2010; 107:17211–17216. PubMed PMC
Goto R, Saito T, Takeda T, Fujimoto T, Takagi M, Arai K, Yamaha E. Germ cells are not the primary factor for sexual fate determination in goldfish. Dev Biol 2012; 370:98–109. PubMed
Piferrer F, Beaumont A, Falguière J-C, Flajshans M, Haffray P, Colombo L. Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture 2009; 293:125–156.
Havelka M, Kaspar V, Hulák M, Flajshans M. Sturgeon genetics and cytogenetics: a review related to ploidy levels and interspecific hybridization. Folia Zool 2011; 60:93–103.
Delivery of Iron Oxide Nanoparticles into Primordial Germ Cells in Sturgeon
Dnd1 Knockout in Sturgeons By CRISPR/Cas9 Generates Germ Cell Free Host for Surrogate Production
Biotechnology applied to fish reproduction: tools for conservation